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Dynamical low-rank (DLR) approximation has gained interest in recent years as a viable solution 
to the curse of dimensionality in the numerical solution of kinetic equations including the 
Boltzmann and Vlasov equations. These methods include the projector-splitting and Basis-

update & Galerkin (BUG) DLR integrators, and have shown promise at greatly improving 
the computational efficiency of kinetic solutions. However, this often comes at the cost of 
conservation of charge, current and energy. In this work we show how a novel macro-micro 
decomposition may be used to separate the distribution function into two components, one 
of which carries the conserved quantities, and the other of which is orthogonal to them. We 
apply DLR approximation to the latter, and thereby achieve a clean and extensible approach to 
a conservative DLR scheme which retains the computational advantages of the base scheme. 
Moreover, our approach requires no change to the mechanics of the DLR approximation, so 
it is compatible with both the BUG family of integrators and the projector-splitting integrator 
which we use here. We describe a first-order integrator which can exactly conserve charge and 
either current or energy, as well as an integrator which exactly conserves charge and energy and 
exhibits second-order accuracy on our test problems. To highlight the flexibility of the proposed 
macro-micro decomposition, we implement a pair of velocity space discretizations, and verify the 
claimed accuracy and conservation properties on a suite of plasma benchmark problems.

1. Introduction

Kinetic equations describe the behavior of rarefied gases and plasmas at low to moderate levels of collisionality. Plasma physics 
in particular is dominated by the study of low collisionality regimes, where the full six-dimensional kinetic physics plays a role in 
the development of micro-instabilities and associated turbulence, anomalous transport, and wave propagation. Unfortunately, the 
numerical solution of kinetic equations is extremely costly due to their high dimensionality: memory and computational requirements 
both scale as (𝑁6) for a discretization with 𝑁 degrees of freedom in each dimension. This obstacle is commonly known as the 
curse of dimensionality.

Particle-in-cell methods [2] sidestep the curse of dimensionality by taking a Lagrangian, particle-based approach to modeling 
phase space, although these suffer from statistical noise. More recently, dimension-reduction techniques based on low-rank approx-

imation to the solution have seen success in solving kinetic equations. Such approaches propose to model the particle distribution 
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function 𝑓 as a low-rank combination of lower-dimensional quantities, thereby greatly reducing computational and memory re-

quirements. These low-rank methods include the “step-truncation” approach [22] and dynamical low-rank (DLR) approximation 
[29]. Dynamical low-rank approximation has been successfully applied to kinetic models for neutral gas dynamics [27,13], radiative 
transport [12,37], and plasma physics problems [10,8,5].

An obstacle to usefully applying DLR approximation to kinetic equations is the preservation of the equation’s conservation 
properties. The truncation implied by the low-rank approximation does not necessarily respect the conservation of the physical 
observables of mass (often called charge density in the plasma setting), momentum (current), and total energy. This conservation 
failure is inherent to the low-rank approximation and occurs independently of the physical or time discretization chosen.

In [11], it was shown how to use a method based on Lagrange multipliers to obtain a quasi-conservative scheme for the Vlasov 
equation of plasma dynamics in the DLR framework. A pair of papers [9,15] demonstrated a first-principles way of achieving 
conservation in the DLR framework, by forcing the velocity basis to contain the functions (1, 𝑣, |𝑣|2∕2) via a modification to the 
DLR Galerkin condition. The second of these works [15] showed how to achieve this in the context of the Basis-update & Galerkin 
(BUG) integrator [3], which is robust to the presence of small singular values. Lately it has been observed that the rank-adaptive 
BUG integrator is also conservative if equipped with a conservative rank-truncation algorithm [14].

In [36] the DLR method was used to evolve the high-order component of a high-order/low-order (HOLO) scheme for the radiative 
transport equation. The DLR method was employed as a moment closure method for a low-order fluid system, while a least-squares 
projection was applied to keep its conserved moments close to those of the fluid system: in this way a conservative DLR method for 
the radiative transport equation was achieved. Finally, under the step truncation family of methods, conservative projections have 
been used to obtain overall conservative low-rank solutions to the Vlasov equation [23,20,21].

Our method is closest in spirit to [30], which shows how to use a modal Legendre discretization of a kinetic extension of the 
shallow-water equations to combine conservation with the BUG integrator. In that work, the authors apply a low-rank ansatz to the 
trailing “microscopic” modes, while evolving the leading modes using standard conservative techniques. However, as formulated, 
the method is limited to modal discretizations of the phase space coordinate.

In this paper we show a new way of obtaining a conservative DLR method for kinetic equations, with a focus on the Vlasov-Fokker-

Planck equation. Our method is based on a novel macro-micro decomposition that operates at the equation level and is designed to be 
amenable to low-rank approximation. The macro part of the decomposition may be solved using standard conservative discretization 
techniques, while we apply a DLR approximation to the micro part. The benefits of our formulation include that it is compatible 
with various DLR integrators, including the projector-splitting integrator which can be formally extended to second-order accuracy 
via standard Strang splitting method, and does not require any rank augmentation at intermediate steps. Moreover, our macro-micro 
decomposition and subsequent DLR approximation are independent of the velocity space discretization, which may be chosen last. 
This represents a substantial benefit for plasma applications, where shock-capturing discretizations in velocity such as Discontinuous 
Galerkin are very popular for their ability to resolve fine phase space structures [25,24].

The rest of this paper is organized as follows. In the remainder of this section we introduce the model equation of plasma physics 
we will discretize, namely the Vlasov equation with Dougherty-Fokker-Planck collision operator. In Section 2 we describe our novel 
macro-micro decomposition and derive the equations of evolution for each part. In Section 3 we describe the time discretization 
of our macro-micro equations in the DLR framework and prove the claimed conservation properties. Sections 4 and 5 describe our 
chosen discretizations of physical and velocity space, respectively. Finally, we present numerical results on standard benchmark 
problems for the Vlasov equation in Section 6. The paper is concluded in Section 7.

1.1. Properties of the Vlasov equation with Dougherty collisions

In this work, we consider a kinetic equation for a single-species plasma with collisions, known as the electrostatic Vlasov equation 
with the Dougherty-Fokker-Planck or Lenard-Bernstein collision operator [7]. In physical terms, this equation describes the motion of 
an electron species against a static ion background, neglecting the influence of magnetic fields. In dimensionless form, the electrostatic 
Vlasov equation for a single species in 𝑑 physical and velocity space dimensions is

𝜕𝑡𝑓 + 𝑣 ⋅∇𝑥𝑓 +𝐸 ⋅∇𝑣𝑓 =𝑄(𝑓 ), 𝑡 > 0, 𝑥 ∈Ω𝑥 ⊂ℝ𝑑 , 𝑣 ∈ℝ𝑑 . (1.1)

Note that our non-dimensionalization also reverses the charge convention, so that the dynamic electron species is given a positive 
unit charge. The function 𝑓 (𝑥, 𝑣, 𝑡) is the normalized probability density function, representing the density of particles with velocity 
𝑣, at position 𝑥 and time 𝑡. The evolution of the electric field 𝐸(𝑥, 𝑡) is coupled to the charge density 𝜌 by either Gauss’s law,

∇𝑥 ⋅𝐸(𝑥, 𝑡) = 𝜌(𝑥, 𝑡) − 𝜌0, 𝜌(𝑥, 𝑡) = ∫
ℝ𝑑

𝑓 d𝑣, (1.2)

with 𝜌0 a uniform background density satisfying ∫Ω𝑥
𝜌(𝑥, 𝑡) − 𝜌0 d𝑥 = 0, or by Ampère’s law:

𝜕𝑡𝐸(𝑥, 𝑡) = −𝐽 (𝑥, 𝑡), 𝐽 (𝑥, 𝑡) = ∫
ℝ𝑑

𝑣𝑓 d𝑣. (1.3)

The initial electric field is chosen to satisfy Gauss’s law, and it is easy to show that at the continuous level, if Gauss’s law is satisfied 
2

at 𝑡 = 0 and 𝐸 evolves according to (1.3), then Gauss’s law is satisfied for all time. However, if one is not careful, numerical 
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discretization errors can lead to violations of (1.2) at the discrete level. These so-called divergence errors can lead to unphysical 
solutions to certain problems. However, Ampere’s law has the advantage that it keeps the overall hyperbolic nature of the system of 
equations, and “divergence cleaning” strategies have been developed [34] to ameliorate the issue of numerical divergence errors.

The Dougherty-Fokker-Planck collision operator for one species, 𝑄(𝑓 ), is defined as

𝑄(𝑓 ) = 𝜈∇𝑣 ⋅ (𝑇∇𝑣𝑓 + (𝑣− 𝑢)𝑓 ).

Here 𝜈 is a dimensionless collision frequency and 𝑇 (𝑥, 𝑡) and 𝑢(𝑥, 𝑡) are the local temperature and fluid velocity, defined via moments 
of 𝑓 :

𝑢(𝑥, 𝑡) = 1
𝜌 ∫
ℝ𝑑

𝑣𝑓 d𝑣, 𝑇 (𝑥, 𝑡) = 1
𝑑𝜌 ∫

ℝ𝑑

|𝑣− 𝑢|2𝑓 d𝑣. (1.4)

It is not hard to show [7] that 𝑄(𝑓 ) satisfies the identity

∫
ℝ𝑑

𝝓(𝑣)𝑄(𝑓 ) d𝑣 = 𝟎,

where 𝝓(𝑣) = (1, 𝑣, |𝑣|2∕2)𝑇 is the vector of so-called collision invariants. These correspond respectively to conservation of mass, 
momentum, and energy in elastic interparticle collisions. Each collision invariant therefore admits a local conservation law, which 
we now derive. Define the current density 𝐽 , kinetic energy density 𝜅, and the (total) energy density 𝑒 as

𝐽 (𝑥, 𝑡) = ∫
ℝ𝑑

𝑣𝑓 d𝑣 = 𝜌𝑢, (1.5)

𝜅(𝑥, 𝑡) = ∫
ℝ𝑑

|𝑣|2
2

𝑓 d𝑣, (1.6)

𝑒(𝑥, 𝑡) = 𝜅 + |𝐸|2
2

. (1.7)

We note that what we have called the charge and current densities, 𝜌 and 𝐽 , are in fact identical to the mass density and momentum 
for the dimensionless, single-species Vlasov equation we consider here. In the case of multiple species it is total momentum, not 
current, which is conserved. Here however, to avoid naming the same quantity two different ways, we refer to conservation of 
current.1 Now, taking the moments of (1.1) weighted by each component of 𝝓(𝑣) gives a system of local conservation laws for 
(𝜌, 𝐽, 𝑒)𝑇 :

𝜕𝑡𝜌+∇𝑥 ⋅ 𝐽 = 0, (1.8)

𝜕𝑡𝐽 +∇𝑥 ⋅ 𝜎 = 𝜌𝐸, (1.9)

𝜕𝑡𝑒+∇𝑥 ⋅ 𝐪 = 0, (1.10)

where 𝜎 = ∫ℝ𝑑 (𝑣 ⊗ 𝑣)𝑓 d𝑣 and 𝐪 = 1
2 ∫ℝ𝑑 𝑣|𝑣|2 d𝑣. An important goal of numerical discretizations of the Vlasov equation is the 

preservation of the local conservation laws (1.8)-(1.10). Failure to respect charge or energy conservation can lead to numerical 
instabilities and nonphysical solutions. More fundamentally, it is precisely these “observables” which are often of greatest interest to 
the practitioner, since the purpose of numerical solutions to kinetic equations is often to shed light on the transport and partition of 
density and energy.

If we take the spatial domain Ω𝑥 to be periodic and integrate in 𝑥, then the divergence terms in (1.8)-(1.10) vanish, and we 
obtain a set of global conservation laws for charge, current and energy:

𝜕𝑡 ∫
Ω𝑥

𝜌d𝑥 = 0, (1.11)

𝜕𝑡 ∫
Ω𝑥

𝑒d𝑥 = 0, (1.12)

and

𝜕𝑡 ∫
Ω𝑥

𝐽 d𝑥 = ∫
Ω𝑥

(∇𝑥 ⋅𝐸 + 𝜌0)𝐸 d𝑥 = ∫
Ω𝑥

1
2
∇𝑥|𝐸|2 + 𝜌0(∇𝑥𝜑) d𝑥 = 0, (1.13)

where we have used the fact that 𝐸 = −∇𝑥𝜑 for some potential function 𝜑.
3

1 The alternative is to refer to the source term in Ampère’s law as the momentum.
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2. A novel macro-micro-decomposition of the Vlasov equation

In this section we describe the novel macro-micro decomposition at the core of our method. By macro-micro decompositions, we 
refer to a family of methods which use a decomposition of the form

𝑓 (𝑥, 𝑣, 𝑡) = (𝑥, 𝑣, 𝑡) + 𝑔(𝑥, 𝑣, 𝑡),

in which  is designed to share its first 𝑑 + 2 moments with 𝑓 , and those same moments of 𝑔 vanish identically. The strategy 
is then to evolve  as accurately as possible using standard conservative discretizations. On the other hand, the fact that 𝑔 does 
not contribute to the conserved quantities lets us evolve it at the precision dictated by the kinetic physics of the problem. Thus, 
the macro-micro decomposition splits a high-dimensional problem into two parts: a lower dimensional problem for  which can 
be solved conservatively, and a high-dimensional problem for 𝑔 to which we can apply either a coarser discretization or more 
sophisticated dimension reduction techniques.

Perhaps the most natural and widely-known macro-micro decomposition for a collisional kinetic equation is given in [1]. This 
approach takes the equilibrium distribution function, the Maxwellian , as the “macro” component:

(𝑥, 𝑣, 𝑡) = 𝜌(𝑥, 𝑡)
(2𝜋𝑇 (𝑥, 𝑡))𝑑∕2

𝑒
− |𝑣−𝑢(𝑥,𝑡)|22𝑇 (𝑥,𝑡) .

For strongly collisional problems, such a decomposition can expect the remainder 𝑔 to be small compared to the Maxwellian. 
However, this decomposition is less appealing when collisions are weaker. Moreover, it is not favored by the DLR method that we 
use here. A key step in DLR is the projection of the right-hand side onto the tangent space of the low-rank approximate solution 
manifold [29]. The problem is that for a Maxwellian-based macro-micro decomposition, computing the necessary projection requires 
evaluating integrals such as(

𝜌(𝑥, 𝑡)
2𝜋𝑇 (𝑥, 𝑡)

)𝑑∕2

∫
ℝ𝑑

𝑉𝑗 (𝑣)𝑒
− |𝑣−𝑢(𝑥,𝑡)|22𝑇 (𝑥,𝑡) d𝑣, (2.1)

which require 𝑂(𝑁2𝑑 ) operations in the general case, where 𝑁 is the number of degrees of freedom in each spatial and velocity 
dimension. References [13,5] present DLR methods for highly collisional regimes based on an expansion around the Maxwellian. 
Both of these papers deal with isothermal flow, in which case the Maxwellian-weighted integrals can be efficiently evaluated by 
exploiting convolutional structure.

Our proposed method is aimed at plasma applications at the electron scale, where collisions are typically much weaker than in 
neutral gases, and phase space often exhibits highly non-equilibrium features. As such, we do not expect a Maxwellian-based macro-

micro decomposition such as [1], nor a Maxwellian-centered DLR scheme such as [13,5], to be advantageous. Rather, to avoid the 
difficulties presented by integrals such as (2.1), we derive a macro component  with fixed rank of 𝑑 +2, which allows for efficient 
computation of the projections required by DLR approximation.

To illustrate the ideas, we restrict our discussion to the “1D1V” case of 𝑑 = 1. At this point we also modify the initial-boundary 
value problem for the Vlasov equation by possibly truncating velocity space. We let 𝑣 ∈ Ω𝑣, where Ω𝑣 ⊆ ℝ may be either bounded 
or equal to ℝ. Our one-dimensional, truncated Vlasov equation is therefore

𝜕𝑡𝑓 + 𝑣𝜕𝑥𝑓 +𝐸𝜕𝑣𝑓 =𝑄(𝑓 ), 𝑡 > 0, 𝑥 ∈Ω𝑥 ⊂ℝ, 𝑣 ∈Ω𝑣 ⊆ℝ. (2.2)

Denote the (𝑥, 𝑣) domain by Ω = Ω𝑥 × Ω𝑣. We impose periodic boundary conditions in 𝑥. For an unbounded velocity domain, no 
boundary conditions in 𝑣 are required, although we must assume that 𝑓 decays sufficiently quickly as 𝑣 → ±∞. On a bounded 
velocity domain we make the same assumption of rapid decay, so that 𝑓 and its derivatives are negligible at the velocity boundary. 
The fluid variables must be redefined in terms of moments of 𝑓 over Ω𝑣, so we will write

𝜌 = ⟨𝑓⟩𝑣, 𝐽 = ⟨𝑣𝑓⟩𝑣 , 𝜅 =
⟨|𝑣|2

2
𝑓

⟩
𝑣

, 𝑒 = 𝜅 + |𝐸|2
2

, (2.3)

𝑢 = 𝐽

𝜌
, 𝑇 = 1

𝜌

⟨|𝑣− 𝑢|2𝑓⟩
𝑣
, (2.4)

where ⟨⋅⟩𝑣 = ∫Ω𝑣
⋅ d𝑣. With these definitions we can again show that

⟨𝝓(𝑣)𝑄(𝑓 )⟩𝑣 = 𝟎, (2.5)

using the fast decay of 𝑓 and its derivatives at the velocity boundary. Therefore, the derivation of the local conservation laws 
(1.8)-(1.10) holds, as well as the global conservation laws (1.11)-(1.13).

Our macro-micro decomposition is based on orthogonal projection in an inner product space over Ω𝑣. To work in an inner product 
space over the possibly unbounded domain Ω𝑣, we require a weight function which we denote 𝑤(𝑣) ∶ Ω𝑣 ↦ ℝ. This induces a pair 
of weighted inner products on Ω𝑣 and Ω, respectively:

⟨𝑔,ℎ⟩𝑤−1(𝑣) = 𝑤−1(𝑣)𝑔(𝑣)ℎ(𝑣) d𝑣, ⟨𝑔,ℎ⟩𝑥,𝑤−1(𝑣) = 𝑤−1(𝑣)𝑔(𝑥, 𝑣)ℎ(𝑥, 𝑣) d𝑥d𝑣.
4

∫
Ω𝑣

∫
Ω
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We denote the corresponding inner product spaces by 𝐿2(Ω𝑣, 𝑤−1) and 𝐿2(Ω, 𝑤−1) respectively. From standard theory [17], the 
inner product ⟨⋅, ⋅⟩𝑤−1(𝑣) has an associated family of orthonormal polynomials, which we will denote by 𝑝𝑛(𝑣). Examples of classical 
orthonormal polynomial families include the Hermite polynomials with weight function 1√

2𝜋𝑣0
𝑒−(𝑣∕𝑣0)

2∕2 on the whole real line, and 

the scaled Legendre polynomials, which have the constant weight function 𝑤(𝑣) = 1
𝑣𝑚𝑎𝑥

on the domain [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥].
All families of orthonormal polynomials satisfy an orthogonality relation

∫
Ω𝑣

𝑤(𝑣)𝑝𝑛(𝑣)𝑝𝑚(𝑣) d𝑣 = ⟨𝑤(𝑣)𝑝𝑛(𝑣),𝑤(𝑣)𝑝𝑚(𝑣)⟩𝑤−1(𝑣) = 𝛿𝑛𝑚, (2.6)

and a symmetric three-term recurrence relation

𝑣𝑝𝑛(𝑣) = 𝑎𝑛𝑝𝑛+1(𝑣) + 𝑏𝑛𝑝𝑛(𝑣) + 𝑎𝑛−1𝑝𝑛−1(𝑣). (2.7)

Also define the coefficients 𝑑10, 𝑑20, 𝑑21 by

𝑝′1(𝑣) = 𝑑10𝑝0(𝑣), and 𝑝′2(𝑣) = 𝑑20𝑝0(𝑣) + 𝑑21𝑝1(𝑣). (2.8)

The first three orthonormal polynomials 𝐩(𝑣) = (𝑝0(𝑣), 𝑝1(𝑣), 𝑝2(𝑣))𝑇 are related to the collision invariants 𝝓(𝑣) by a lower-

triangular, invertible matrix 𝐶 :

𝝓(𝑣) =
⎛⎜⎜⎝

1
𝑣

𝑣2∕2

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝑐00
𝑐10 𝑐11
𝑐20 𝑐21 𝑐22

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑝0(𝑣)
𝑝1(𝑣)
𝑝2(𝑣)

⎞⎟⎟⎠ = 𝐶

⎛⎜⎜⎝
𝑝0(𝑣)
𝑝1(𝑣)
𝑝2(𝑣)

⎞⎟⎟⎠ = 𝐶𝐩(𝑣). (2.9)

The span of 𝑤(𝑣)𝝓(𝑣) is an important subspace, which we will denote by Φ:

Φ= span{𝑤(𝑣), 𝑣𝑤(𝑣), |𝑣|2𝑤(𝑣)∕2}.

We are interested in the orthogonal projection onto Φ with respect to ⟨⋅⟩𝑤−1(𝑣), which we will denote 𝑃Φ. The existence of the 
invertible matrix 𝐶 shows that 𝑤(𝑣)𝐩(𝑣) is a basis for Φ. In fact, it is an orthogonal basis, since its elements are orthonormal per 
(2.6). This gives an explicit formula for the orthogonal projection 𝑃Φ :

𝑃Φ𝑓 =𝑤(𝑣)𝐩(𝑣)𝑇 ⟨𝑤(𝑣)𝐩(𝑣), 𝑓⟩𝑤−1(𝑣) =𝑤(𝑣)𝐩(𝑣)𝑇 ⟨𝐩(𝑣)𝑓⟩𝑣 . (2.10)

Denote the orthogonal complement of 𝑃Φ by 𝑃⟂
Φ = 𝐼 − 𝑃Φ. Our proposed macro-micro decomposition of 𝑓 is that induced by the 

pair of projections:

𝑓 (𝑥, 𝑣, 𝑡) = 𝑃Φ𝑓 (𝑥, 𝑣, 𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟


+𝑃⟂

Φ𝑓 (𝑥, 𝑣, 𝑡)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑔

.

The function  has an explicit formula in terms of 𝑝0, 𝑝1, 𝑝2 and the corresponding moments:

 (𝑥, 𝑣, 𝑡) =𝑤(𝑣)𝐩(𝑣)𝑇 ⟨𝐩(𝑣)𝑓⟩𝑣 =𝑤(𝑣)[𝑝0(𝑣)𝑓0(𝑥, 𝑡) + 𝑝1(𝑣)𝑓1(𝑥, 𝑡) + 𝑝2(𝑣)𝑓2(𝑥, 𝑡)], (2.11)

where 𝑓𝑛 denotes the moment of 𝑓 with respect to 𝑝𝑛(𝑣):

𝑓𝑛(𝑥, 𝑡) = ⟨𝑝𝑛(𝑣)𝑓 (𝑥, 𝑣, 𝑡)⟩𝑣 .
It is easy to show that 

⟨
𝐩⟩

𝑣
= ⟨𝐩𝑓⟩𝑣 using the orthogonality relation (2.6). Because 𝐩(𝑣) and 𝝓(𝑣) are related by the matrix 𝐶 , 

and 𝑓 share their first three velocity moments:⟨
𝝓⟩

𝑣
= 𝐶⟨𝐩(𝑣) ⟩𝑣 = 𝐶 ⟨𝐩(𝑣)𝑓⟩𝑣 = ⟨𝝓𝑓⟩𝑣 ,

which immediately implies ⟨𝝓𝑔⟩𝑣 = 0. That is, the microscopic part 𝑔 of the distribution function carries no charge, current, or 
kinetic energy density.

We now derive equations for the evolution of  and 𝑔 as functions of time. For the macroscopic portion of the distribution 
function, we are less interested in 𝜕𝑡 (𝑥, 𝑣, 𝑡) itself, and more interested in the evolution of the vector of conserved quantities. 
Rather than use the typical equations for charge, current and energy, however, it is more convenient to derive equations for the 
moments of 𝑓 with respect to 𝐩(𝑣). To this end, we apply the operation ⋆ ↦ ⟨𝐩(𝑣)⋆⟩𝑣 to the Vlasov equation (2.2), and write the 
result componentwise with the help of the recurrence relation (2.7) and derivative relations (2.8). After integrating the 𝐸 ⋅ 𝜕𝑣𝑓 term 
by parts, we obtain

𝜕𝑡

⎛⎜⎜⎝
𝑓0
𝑓1
𝑓2

⎞⎟⎟⎠
⏟⏟⏟

+
⎛⎜⎜⎝
𝑏0 𝑎0
𝑎0 𝑏1 𝑎1

𝑎1 𝑏2

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝜕𝑥

⎛⎜⎜⎝
𝑓0
𝑓1
𝑓2

⎞⎟⎟⎠+
⎛⎜⎜⎝

0
0

𝑎2𝜕𝑥𝑓3

⎞⎟⎟⎠
⏟⏞⏞⏟⏞⏞⏟

+𝐸
⎛⎜⎜⎝

0
−𝑑10 0
−𝑑20 −𝑑21 0

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

⎛⎜⎜⎝
𝑓0
𝑓1
𝑓2

⎞⎟⎟⎠ = ∫
Ω𝑣

𝐩(𝑣)𝑄(𝑓 ) d𝑣. (2.12)
5

𝑈 𝑉 𝑎2𝜕𝑥𝑓3𝐞2 𝐷𝑣
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We have introduced the name 𝑈 for the vector of the first three 𝑝-moments of 𝑓 , as well as the symbols 𝑉 and 𝐷𝑣 for the flux and 
velocity derivative matrices, respectively.

Using the fact that 𝐩(𝑣) = 𝐶−1𝝓(𝑣), we can see that the right-hand side of (2.12) is a linear combination of the moments of 𝑄(𝑓 )
with respect to the collision invariants, which by (2.5) vanish identically. Simplifying, we obtain the following initial-boundary value 
problem for 𝑈 (𝑥, 𝑡):{

𝜕𝑡𝑈 (𝑥, 𝑡) + 𝑉 𝜕𝑥𝑈 + 𝑎2𝜕𝑥𝑓3𝐞2 +𝐸(𝑥, 𝑡)𝐷𝑣𝑈 = 0, (𝑥, 𝑡) ∈ Ω𝑥 × (0,∞),
𝑈 (𝑥,0) = ⟨𝐩(𝑣)𝑓 (𝑥, 𝑣,0)⟩𝑣 , 𝑥 ∈Ω𝑥.

(2.13)

We have derived a system of equations for 𝑈 , but it is not a closed system. As expected, a term appears which requires closure: the 
flux of 𝑓2 includes a term proportional to 𝑓3. This is the appearance in our formulation of the well-known moment closure problem. 
The closure information must come from the part of 𝑓 that we have projected away, namely 𝑔:

𝑓3 = ⟨𝑝3(𝑣)𝑓⟩𝑣 = ⟨𝑝3(𝑣)𝑔⟩𝑣 ,
where the second equality holds because 𝑤(𝑣)𝑝3(𝑣) is orthogonal to the subspace Φ.

The evolution of 𝑔 is obtained by substituting 𝑓 = + 𝑔 into (2.2) and applying the orthogonal projection 𝑃⟂
Φ :

𝜕𝑡𝑃
⟂
Φ 𝑔 = −𝜕𝑡𝑃⟂

Φ − 𝑃⟂
Φ
(
𝑣𝜕𝑥 +𝐸𝜕𝑣 + 𝑣𝜕𝑥𝑔 +𝐸𝜕𝑣𝑔

)
+ 𝑃⟂

Φ𝑄( + 𝑔)

= −𝑃⟂
Φ
(
𝑣𝜕𝑥 +𝐸𝜕𝑣 + 𝑣𝜕𝑥𝑔 +𝐸𝜕𝑣𝑔

)
+ 𝑃⟂

Φ𝑄( + 𝑔)

≜ 𝑃⟂
Φ𝐷[𝐸, , 𝑔].

Here, we have interchanged the partial derivative 𝜕𝑡 with the time-independent projection 𝑃⟂
Φ , and used the fact that 𝑃⟂

Φ = 0. 
Combining this with initial and boundary conditions, 𝑔 satisfies the initial-boundary value problem

⎧⎪⎨⎪⎩
𝜕𝑡𝑔(𝑥, 𝑣, 𝑡) = 𝑃⟂

Φ𝐷[𝐸, (𝑥, 𝑣, 𝑡), 𝑔(𝑥, 𝑣, 𝑡)], (𝑥, 𝑣, 𝑡) ∈ Ω × (0,∞),
𝑔(𝑥, 𝑣,0) = 𝑓 (𝑥, 𝑣,0) − (𝑥, 𝑣,0), (𝑥, 𝑣) ∈ Ω,
𝑔(𝑥, 𝑣𝑏, 𝑡) = − (𝑥, 𝑣𝑏, 𝑡) (𝑥, 𝑣, 𝑡) ∈ Ω𝑥 × 𝜕Ω𝑣 × (0,∞).

(2.14)

Together, equations (2.13) and (2.14) constitute an exact macro-micro decomposition of (2.2). They are coupled on the one hand 
by the appearance in (2.14) of terms involving  , and on the other hand by the gradient of 𝑓3. Obtaining the charge, current, and 
kinetic energy density from the solution to (2.13) is trivially accomplished with the transformation matrix 𝐶 :

⎛⎜⎜⎝
𝜌

𝐽

𝜅

⎞⎟⎟⎠ (𝑥, 𝑡) = ∫
Ω𝑣

⎛⎜⎜⎝
1
𝑣|𝑣|2∕2
⎞⎟⎟⎠𝑓 d𝑣 = 𝐶𝑈 (𝑥, 𝑡).

We also expand 𝜌, 𝑢, and 𝑇 , defined by (2.4), in terms of 𝐶 and 𝑈 .

𝜌 = 𝑐00𝑓0, (2.15)

𝑢 = 1
𝜌 ∫ 𝑣𝑓 d𝑣 =

𝑐11𝑓1 + 𝑐10𝑓0
𝜌

, (2.16)

𝑇 = 1
𝜌 ∫ (𝑣− 𝑢)2𝑓 d𝑣 = 1

𝜌

(
∫ 𝑣2𝑓 d𝑣− 𝜌𝑢2

)
=

2𝑐22𝑓2 + 2𝑐21𝑓1 + 2𝑐20𝑓0
𝜌

− 𝑢2. (2.17)

3. Time discretization

We turn now to a discussion of how the coupled initial-boundary value problems (2.13) and (2.14) are discretized in time. 
Our strategy is to discretize (2.13) using standard conservative techniques, while (2.14) is discretized using the projector-splitting 
dynamical low-rank integrator [32]. Because the Vlasov equation must be coupled with an equation to advance the electric field, de-

veloping a scheme that is conservative overall is rather involved, and requires a careful consideration of the way that the conservation 
properties transfer from the continuous to the discrete level. This section is organized as follows.

• Section 3.1 presents the projector-splitting integrator and equations of motion for the low-rank factors of 𝑔.

• In Section 3.2 we present a first-order integrator which can achieve conservation of charge density, and either current or energy 
density depending how 𝑓 is coupled to the electric field.

• In Section 3.3 we present a second-order integrator which can achieve conservation of charge and energy density by coupling 
with Ampère’s law.
6

• Section 3.4 gives the details of calculations necessary to implement the evolution equations for the low-rank factors of 𝑔.
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3.1. Dynamical low-rank approximation of 𝑔

We now describe the dynamical low-rank approximation for 𝑔, and write down the equations of motion of the low-rank factors. 
One of our main contributions in this work is the ability to combine a conservative scheme with any dynamical low-rank integrator: 
the DLR equations of motion are unchanged by our scheme, and conservation does not rely on a rank augmentation at any interme-

diate step. We choose the projector-splitting integrator for the ease with which it may be formally extended to second-order accuracy 
via a Strang splitting scheme with no increase of the rank in intermediate steps. However, no proof of robust second-order accuracy 
exists. In a very recent development, a robust second-order BUG integrator has been introduced in [4], with which our macro-micro 
decomposition should also be compatible. Prior work has demonstrated locally conservative methods for the Vlasov equation with 
the traditional [9] and robust basis-update & Galerkin [15] dynamical low-rank integrators. For the projector-splitting integrator, 
only a globally conservative method based on Lagrange multipliers [11] has been demonstrated previously. To our knowledge this 
is the first locally conservative scheme in the projector-splitting integrator.

Our approach is to apply the standard projector-splitting integrator, but to use the weighted inner product ⟨⋅⟩𝑤−1(𝑣) for projection 
along 𝑣. The low-rank ansatz for 𝑔 is

𝑔(𝑥, 𝑣, 𝑡) =
∑
𝑖𝑗

𝑋𝑖(𝑥, 𝑡)𝑆𝑖𝑗 (𝑡)𝑉𝑗 (𝑣, 𝑡), (3.1)

with the basis functions 𝑋𝑖(𝑥, 𝑡) satisfying

𝑋𝑖 ∈
{
𝑋𝑖 ∈𝐿2(Ω𝑥) ∶ ⟨𝑋𝑖,𝑋𝑘⟩𝑥 = 𝛿𝑖𝑘

}
, (3.2)

and the velocity basis functions 𝑉𝑗 (𝑣, 𝑡) satisfying

𝑉𝑗 ∈
{
𝑉𝑗 ∈𝐿2(Ω𝑣,𝑤

−1(𝑣)) ∶
⟨
𝑉𝑗, 𝑉𝑙

⟩
𝑤−1(𝑣) = 𝛿𝑗𝑙

}
. (3.3)

While the basis functions in 𝑥 are chosen the same way as in the unmodified dynamical low-rank approximation (cf. [10]), the 𝑣
basis functions are chosen to be orthonormal with respect to the 𝑤−1-weighted inner product.

The equations of motion for the low-rank factors are obtained by projecting (2.14) onto the subspaces spanned by 𝑋𝑖 and 𝑉𝑗 . The 
low-rank projection is of the form

𝜕𝑡𝑔 =
∑
𝑗

⟨
𝑉𝑗 ,𝑃

⟂
Φ𝐷[𝐸, , 𝑔]

⟩
𝑤−1(𝑣) 𝑉𝑗 −

∑
𝑖𝑗

𝑋𝑖

⟨
𝑋𝑖𝑉𝑗 ,𝑃

⟂
Φ𝐷[𝐸, , 𝑔]

⟩
𝑥,𝑤−1(𝑣) 𝑉𝑗

+
∑
𝑖

𝑋𝑖

⟨
𝑋𝑖,𝑃

⟂
Φ𝐷[𝐸, , 𝑔]

⟩
𝑥
.

Defining 𝐾𝑗 and 𝐿𝑖 via

𝐾𝑗 (𝑥, 𝑡) =
∑
𝑖

𝑋𝑖(𝑥, 𝑡)𝑆𝑖𝑗 (𝑡), 𝐿𝑖(𝑣, 𝑡) =
∑
𝑗

𝑆𝑖𝑗 (𝑡)𝑉𝑗 (𝑣, 𝑡), (3.4)

we may write

𝜕𝑡𝑔 =
∑
𝑗

𝜕𝑡𝐾𝑗𝑉𝑗 +
∑
𝑖𝑗

𝑋𝑖𝜕𝑡𝑆𝑖𝑗𝑉𝑗 +
∑
𝑖

𝑋𝑖𝜕𝑡𝐿𝑖, (3.5)

with

𝜕𝑡𝐾𝑗 =
⟨
𝑉𝑗 ,𝑃

⟂
Φ𝐷[𝐸, , 𝑔]

⟩
𝑤−1(𝑣) , (3.6)

𝜕𝑡𝑆𝑖𝑗 = −
⟨
𝑋𝑖𝑉𝑗 ,𝑃

⟂
Φ𝐷[𝐸, , 𝑔]

⟩
𝑥,𝑤−1(𝑣) , (3.7)

𝜕𝑡𝐿𝑖 =
⟨
𝑋𝑖,𝑃

⟂
Φ𝐷[𝐸, , 𝑔]

⟩
𝑥
. (3.8)

We will initialize the low-rank factors by performing a singular value decomposition of the discretization of 𝑔 and truncating to rank 
𝑟.2 Note that at this point no discretization in time nor operator splitting has been performed. In the next section we describe how 
the standard first-order splitting of (3.5) is incorporated into a first-order in time discretization for our macro-micro decomposition.

3.2. First-order integrator

In this section we describe a first-order in time integrator which conserves charge and either current or energy exactly. The 
algorithm computes the following time advance between times 𝑡𝑛 and 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡:

2 Performing a full SVD of 𝑔 is feasible for the 1D1V problems we consider here, but it may be necessary to avoid this for higher-dimensional problems. Randomized 
algorithms such as the randomized SVD can be used to compute highly accurate decompositions of enormous matrices at a small fraction of the cost. See [33] for an 
7

excellent overview of these ideas.
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⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐸𝑛

𝑓𝑛
0

𝑓𝑛
1

𝑓𝑛
2

𝑋𝑛

𝑆𝑛

𝑉 𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
↦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐸𝑛+1

𝑓𝑛+1
0

𝑓𝑛+1
1

𝑓𝑛+1
2

𝑋𝑛+1

𝑆𝑛+1

𝑉 𝑛+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
1. Calculate the electric field: The choice of electric field solution depends on whether current or energy conservation is desired.

(a) For current conservation: Determine the electric field from Gauss’s law. Solve the following Poisson equation for the 
electric potential 𝜑𝑛:

𝜕2𝑥𝜑
𝑛 = −(𝜌𝑛 − 𝜌0), 𝜌𝑛 = 𝑐00𝑓

𝑛
0 . (3.9)

Then the electric field 𝐸∗ to be used is

𝐸∗ =𝐸𝑛 = −𝜕𝑥𝜑𝑛. (3.10)

(b) For energy conservation: Perform a single Forward Euler step of Ampère’s law (1.3) to obtain 𝐸𝑛+1:

𝐸𝑛+1 −𝐸𝑛

Δ𝑡
= −𝐽𝑛, (3.11)

where 𝐽𝑛 = ∫Ω𝑣
𝑣𝑓𝑛 d𝑣 = 𝑐10𝑓

𝑛
0 + 𝑐11𝑓

𝑛
1 . For the current timestep, use a time-centered electric field:

𝐸∗ = 𝐸𝑛+1 +𝐸𝑛

2
. (3.12)

2. Advance conserved quantities: Perform a single Forward Euler timestep of (2.12):

𝑓𝑛+1
0 − 𝑓𝑛

0
Δ𝑡

= 𝜕𝑥(−𝑏0𝑓𝑛
0 − 𝑎0𝑓

𝑛
1 ), (3.13)

𝑓𝑛+1
1 − 𝑓𝑛

1
Δ𝑡

= −𝑎1𝜕𝑥𝑓𝑛
2 − 𝑏1𝜕𝑥𝑓

𝑛
1 − 𝑎0𝜕𝑥𝑓

𝑛
0 +𝐸∗𝑑10𝑓

𝑛
0 , (3.14)

𝑓𝑛+1
2 − 𝑓𝑛

2
Δ𝑡

= −𝑎2𝜕𝑥𝑓𝑛
3 − 𝑏2𝜕𝑥𝑓

𝑛
2 − 𝑎1𝜕𝑥𝑓

𝑛
1 +𝐸∗(𝑑20𝑓𝑛

0 + 𝑑21𝑓
𝑛
1 ). (3.15)

The third moment 𝑓𝑛
3 can be computed from the low-rank factors like so:

𝑓𝑛
3 =
∑
𝑖𝑗

𝑋𝑛
𝑖 𝑆

𝑛
𝑖𝑗

⟨
𝑝3(𝑣)𝑉 𝑛

𝑗

⟩
𝑣
. (3.16)

Define  𝑛(𝑥, 𝑣) by

 𝑛(𝑥, 𝑣) =𝑤(𝑣)[𝑝0(𝑣)𝑓𝑛
0 (𝑥) + 𝑝1(𝑣)𝑓𝑛

1 (𝑥) + 𝑝2(𝑣)𝑓𝑛
2 (𝑥)].

3. K step: Calculate 𝐾𝑛
𝑗
(𝑥) =

∑
𝑖 𝑋

𝑛
𝑖
(𝑥)𝑆𝑛

𝑖𝑗
, and perform a Forward Euler step of (3.6) to obtain 𝐾𝑛+1

𝑗
(𝑥):

𝐾𝑛+1
𝑗

−𝐾𝑛
𝑗

Δ𝑡
=

⟨
𝑉 𝑛
𝑗 , 𝑃

⟂
Φ𝐷

[
𝐸∗, 𝑛,

∑
𝑙

𝐾𝑛
𝑙
𝑉 𝑛
𝑙

]⟩
𝑤−1(𝑣)

. (3.17)

Perform a QR decomposition of 𝐾𝑛+1
𝑗

(𝑥) to obtain 𝑋𝑛+1
𝑖

(𝑥) and 𝑆′
𝑖𝑗

.

4. S step: Perform a Forward Euler step of (3.7) to obtain 𝑆′′
𝑖𝑗

:

𝑆′′
𝑖𝑗
−𝑆′

𝑖𝑗

Δ𝑡
= −

⟨
𝑋𝑛+1

𝑖
𝑉 𝑛
𝑗 , 𝑃

⟂
Φ𝐷

[
𝐸∗, 𝑛,

∑
𝑘𝑙

𝑋𝑛+1
𝑘

𝑆′
𝑘𝑙
𝑉 𝑛
𝑙

]⟩
𝑥,𝑤−1(𝑣)

. (3.18)

5. L step: Calculate 𝐿𝑛
𝑖
(𝑣) =

∑
𝑗 𝑆

′′
𝑖𝑗
𝑉 𝑛
𝑗
(𝑣), and perform a Forward Euler step of (3.8) to obtain 𝐿𝑛+1

𝑖
(𝑣):

𝐿𝑛+1
𝑖

−𝐿𝑛
𝑖

Δ𝑡
=

⟨
𝑋𝑛+1

𝑖
, 𝑃⟂

Φ𝐷

[
𝐸∗, 𝑛,

∑
𝑘

𝑋𝑛+1
𝑘

𝐿𝑛
𝑘

]⟩
𝑥

. (3.19)

At this point, we must perform a QR decomposition of 𝐿𝑛+1
𝑖

(𝑣) to obtain the new velocity basis 𝑉 𝑛+1
𝑗

and singular value matrix 
8

𝑆𝑛+1
𝑖𝑗

(𝑣). However, we also require that the velocity basis so obtained is orthogonal to Φ.
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We accomplish this by prepending the three functions 𝑤(𝑣)𝐩(𝑣) to the vector of functions 𝐿𝑛+1
𝑖

(𝑣). Denoting vector concatenation 
by square brackets, we compute a QR decomposition

[𝑤(𝑣)𝐩(𝑣) 𝑉 𝑛+1
𝑗

(𝑣)]𝑅 = [𝑤(𝑣)𝐩(𝑣) 𝐿𝑛+1
𝑖

(𝑣)], (3.20)

with respect to the function inner product ⟨⋅⟩𝑤(𝑣)−1 . The QR decomposition leaves the first three functions unchanged since they 
are already orthogonal, and guarantees that the resulting basis 𝑉 𝑛+1

𝑗
(𝑣) is orthogonal to Φ, which is spanned by 𝑤(𝑣)𝐩(𝑣).

The updated matrix of singular values is then given by the trailing 𝑟 × 𝑟 minor of 𝑅:

𝑆𝑛+1
𝑖𝑗

=𝑅𝑖+3,𝑗+3.

3.2.1. Proof of conservation

We now prove local conservation of our scheme. The local conservation statement is satisfied by conservative dynamical low-rank 
integrators such as [15] and [14], and is important for ensuring that the solution has the properties of a hyperbolic conservation law, 
such as finite wavespeeds. We formulate this property in the following theorem:

Theorem 3.1. Define the conserved quantities of charge, current, and kinetic energy density at time level 𝑡𝑛 as follows:

𝜌𝑛 = ⟨𝑓𝑛,1⟩𝑣 , (3.21)

𝐽𝑛 = ⟨𝑓𝑛, 𝑣⟩𝑣 , (3.22)

𝜅𝑛 =
⟨
𝑓𝑛,

1
2
𝑣2
⟩
𝑣
. (3.23)

The first-order integration algorithm of Section 3.2 satisfies three local source-balance laws

𝜌𝑛+1 − 𝜌𝑛

Δ𝑡
+ 𝜕𝑥𝐽

𝑛 = 0, (3.24)

𝐽𝑛+1 − 𝐽𝑛

Δ𝑡
+ 2𝜕𝑥𝜅𝑛 = 𝜌𝑛𝐸∗, (3.25)

𝜅𝑛+1 − 𝜅𝑛

Δ𝑡
+ 𝜕𝑥

⟨
𝑓𝑛,

𝑣3

2

⟩
𝑣

= 𝐽𝑛𝐸∗. (3.26)

Proof. By (3.20), 𝑃Φ𝑉
𝑛
𝑗
= 0, so ⟨𝑔𝑛,𝝓(𝑣)⟩𝑣 = 0 for all times 𝑛. Therefore the only contribution to the conserved quantities comes 

from 𝑓0, 𝑓1, and 𝑓2.

To show mass conservation, we make use of (2.9), (3.13), and (2.7) to obtain

𝜌𝑛+1 − 𝜌𝑛

Δ𝑡
= 𝑐00

𝑓𝑛+1
0 − 𝑓𝑛

0
Δ𝑡

= 𝑐00𝜕𝑥(−𝑏0𝑓𝑛
0 − 𝑎0𝑓

𝑛
1 )

= −𝑐00𝜕𝑥 ⟨𝑓𝑛, 𝑣𝑝0(𝑣)⟩𝑣
= −𝜕𝑥 ⟨𝑓𝑛, 𝑣⟩𝑣
= −𝜕𝑥𝐽𝑛.

For current conservation, we use (3.14) and (2.9):

𝐽𝑛+1 − 𝐽𝑛

Δ𝑡
= 𝑐11

𝑓𝑛+1
1 − 𝑓𝑛

1
Δ𝑡

+ 𝑐10
𝑓𝑛+1
0 − 𝑓𝑛

0
Δ𝑡

= 𝑐11(−𝑎1𝜕𝑥𝑓𝑛
2 − 𝑏1𝜕𝑥𝑓

𝑛
1 − 𝑎0𝜕𝑥𝑓

𝑛
0 +𝐸∗𝑑10𝑓

𝑛
0 ) + 𝑐10(−𝑏0𝜕𝑥𝑓𝑛

0 − 𝑎0𝜕𝑥𝑓
𝑛
1 )

= −𝑐11𝜕𝑥 ⟨𝑓𝑛, 𝑣𝑝1(𝑣)⟩𝑣 − 𝑐10𝜕𝑥 ⟨𝑓𝑛, 𝑣𝑝0(𝑣)⟩𝑣 + 𝑐11𝐸
∗𝑑10 ⟨𝑓𝑛, 𝑝0(𝑣)⟩𝑣

= −𝜕𝑥
⟨
𝑓𝑛, 𝑣2

⟩
𝑣
+ 𝑐11𝐸

∗ ⟨𝑓𝑛, 𝑝′1(𝑣)
⟩
𝑣

= −𝜕𝑥
⟨
𝑓𝑛, 𝑣2

⟩
𝑣
−𝐸∗ ⟨𝜕𝑣𝑓𝑛, 𝑣⟩𝑣

= −2𝜕𝑥𝜅𝑛 +𝐸∗𝜌𝑛.

For kinetic energy conservation, using (3.15) we obtain

2𝜅
𝑛+1 − 𝜅𝑛

Δ𝑡
= 𝑐22

𝑓𝑛+1
2 − 𝑓𝑛

2
Δ𝑡

+ 𝑐21
𝑓𝑛+1
1 − 𝑓𝑛

1
Δ𝑡

+ 𝑐20
𝑓𝑛+1
0 − 𝑓𝑛

0
Δ𝑡

= −𝜕𝑥 ⟨𝑓𝑛, 𝑣[𝑐22𝑝2(𝑣) + 𝑐21𝑝1(𝑣) + 𝑐20𝑝0(𝑣)]⟩𝑣
+𝐸∗ ⟨𝑓𝑛, [𝑐22𝑝′2(𝑣) + 𝑐21𝑝

′
1(𝑣)]

⟩
𝑣⟨

𝑛 3⟩ ∗ ⟨ 𝑛 2⟩

9

= −𝜕𝑥 𝑓 , 𝑣
𝑣
−𝐸 𝜕𝑣𝑓 , 𝑣

𝑣
.
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Simplifying slightly,

𝜅𝑛+1 − 𝜅𝑛

Δ𝑡
+ 𝜕𝑥

⟨
𝑓𝑛,

𝑣3

2

⟩
𝑣

= 𝐽𝑛𝐸∗.

This completes the proof. □

Theorem 3.1 shows that the macroscopic current and kinetic energy satisfy the same source-balance laws as the full kinetic 
equation. The source terms in (3.25) and (3.26) reflect the fact that the particle distribution function exchanges momentum and 
energy with the electric field. Depending on the choice of electric field solve, we can show that the total energy, including electric 
field energy, satisfies a local conservation law:

Corollary 3.1. Define the total energy at time level 𝑡𝑛 as

𝑒𝑛 = 𝜅𝑛 + |𝐸𝑛|2
2

. (3.27)

Then the first-order integration algorithm of Section 3.2 with the choice of Ampère solve and 𝐸∗ = 𝐸𝑛+1+𝐸𝑛

2 satisfies a local conservation law,

𝑒𝑛+1 − 𝑒𝑛

Δ𝑡
+ 𝜕𝑥

⟨
𝑓𝑛,

𝑣3

2

⟩
𝑣

= 0. (3.28)

Proof. The proof is a simple application of (3.26) and (3.11):

𝑒𝑛+1 − 𝑒𝑛

Δ𝑡
= 𝜅𝑛+1 − 𝜅𝑛

Δ𝑡
+ |𝐸𝑛+1|2 − |𝐸𝑛|2

2Δ𝑡

= −𝜕𝑥
⟨
𝑓𝑛,

𝑣3

2

⟩
𝑣

+ 𝐸𝑛+1 +𝐸𝑛

2
𝐽𝑛 + 𝐸𝑛+1 +𝐸𝑛

2
𝐸𝑛+1 −𝐸𝑛

Δ𝑡

= −𝜕𝑥
⟨
𝑓𝑛,

𝑣3

2

⟩
𝑣

. □

To summarize, (3.24) demonstrates exact local conservation of charge, and (3.28) demonstrates exact local conservation of total 
energy for the Ampère’s law variation of the first-order integrator. Per (3.25), current is not locally conserved, since the mobile 
particles “push against” the background charge density 𝜌0. However, we can prove a global conservation statement for current in the 
special case of periodic boundary conditions and the Gauss’s law variation of the first-order integrator:

Corollary 3.2. If Gauss’s law and the uncentered electric field 𝐸∗ =𝐸𝑛 are chosen in the first-order integrator, then

∫
Ω𝑥

𝐽𝑛+1 − 𝐽𝑛

Δ𝑡
d𝑥 = 0.

Proof. Integrate (3.25) over the periodic domain Ω𝑥 to obtain

∫
Ω𝑥

𝐽𝑛+1 − 𝐽𝑛

Δ𝑡
d𝑥 = ∫

Ω𝑥

𝜌𝑛𝐸∗ d𝑥 = −∫
Ω𝑥

𝜌𝑛𝜕𝑥𝜑
𝑛 d𝑥 = ∫

Ω𝑥

(𝜕2𝑥𝜑
𝑛 − 𝜌0)𝜕𝑥𝜑𝑛 d𝑥 = 0.

We have used (3.9) and (3.10), and eliminated all integrals of total derivatives. □

Remark 1. A fully discrete conservative scheme for the first-order integrator of Section 3.2 is easily achieved by using a conserva-

tive spatial discretization for the 𝜕𝑥 operators appearing in equations (3.13)-(3.15). Such a scheme will satisfy exact conservation 
of charge, and conservation of energy if Ampère’s law is used. Furthermore, a discrete scheme using Gauss’s law will exactly con-

serve current on a periodic domain if the discrete 𝜕𝑥 operators in (3.9) and (3.10) satisfy a summation-by-parts identity. One such 
discretization is the common second-order centered finite difference scheme.

3.3. Second-order time integrator

The projector-splitting framework may be formally extended to second-order accuracy by using a Strang splitting of (3.5). A Strang 
splitting of the dynamical low-rank projection has been used in [10] and [8] to obtain second-order accurate solutions to certain 
problems. We stress that it has not been proven that the Strang splitting of the DLR projection is robust to vanishing singular values, 
as it has for the first-order splitting [28]. That is, no robust second-order accuracy result exists. Nevertheless, the second-order Strang 
10

splitting scheme shows significant practical benefits on plasma problems, as demonstrated for example in [8]. To achieve overall 
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second-order accuracy, some care is required when coupling the DLR scheme with the time splitting for  and 𝐸. Here we present 
one such scheme and prove that it exactly conserves energy.

1. Half step of conserved quantities: (𝑓𝑛
0 , 𝑓

𝑛
1 , 𝑓

𝑛
2 ) ↦ (𝑓𝑛+1∕2

0 , 𝑓𝑛+1∕2
1 , 𝑓𝑛+1∕2

2 ) using 𝑔𝑛, 𝐸𝑛:

𝑓
𝑛+1∕2
0 − 𝑓𝑛

0
Δ𝑡∕2

= 𝜕𝑥(−𝑏0𝑓𝑛
0 − 𝑎0𝑓

𝑛
1 ), (3.29)

𝑓
𝑛+1∕2
1 − 𝑓𝑛

1
Δ𝑡∕2

= 𝜕𝑥(−𝑎1𝑓𝑛
2 − 𝑏1𝑓

𝑛
1 − 𝑎0𝑓

𝑛
0 ) +𝐸𝑛𝑑10𝑓

𝑛
0 , (3.30)

𝑓
𝑛+1∕2
2 − 𝑓𝑛

2
Δ𝑡∕2

= 𝜕𝑥(−𝑎2𝑓𝑛
3 − 𝑏2𝑓

𝑛
2 − 𝑎1𝑓

𝑛
1 ) +𝐸𝑛(𝑑20𝑓𝑛

0 + 𝑑21𝑓
𝑛
1 ), (3.31)

where 𝑓𝑛
3 is defined as in (3.16). Define

 𝑛+1∕2 =𝑤(𝑣)[𝑝0(𝑣)𝑓
𝑛+1∕2
0 + 𝑝1(𝑣)𝑓

𝑛+1∕2
1 + 𝑝2(𝑣)𝑓

𝑛+1∕2
2 ].

2. Ampère solve: 𝐸𝑛 ↦𝐸𝑛+1 using 𝑓𝑛+1∕2
0 , 𝑓𝑛+1∕2

1 :

𝐸𝑛+1 −𝐸𝑛

Δ𝑡
= −𝐽𝑛+1∕2, 𝐽 𝑛+1∕2 = 𝑐10𝑓

𝑛+1∕2
0 + 𝑐11𝑓

𝑛+1∕2
1 . (3.32)

Define 𝐸𝑛+1∕2 = 𝐸𝑛+1+𝐸𝑛

2 .

3. K step: (𝑋𝑛, 𝑆𝑛, 𝑉 𝑛) ↦ (𝑋𝑛+1∕2, 𝑆1, 𝑉 𝑛) using  𝑛+1∕2, 𝐸𝑛+1∕2.

4. S step: (𝑋𝑛+1∕2, 𝑆1, 𝑉 𝑛) ↦ (𝑋𝑛+1∕2, 𝑆2, 𝑉 𝑛) using  𝑛+1∕2, 𝐸𝑛+1∕2.

5. L step: (𝑋𝑛+1∕2, 𝑆2, 𝑉 𝑛) ↦ (𝑋𝑛+1∕2, 𝑆𝑛+1∕2, 𝑉 𝑛+1∕2) using  𝑛+1∕2, 𝐸𝑛+1∕2.

6. L step: (𝑋𝑛+1∕2, 𝑆𝑛+1∕2, 𝑉 𝑛+1∕2) ↦ (𝑋𝑛+1∕2, 𝑆3, 𝑉 𝑛+1) using  𝑛+1∕2, 𝐸𝑛+1∕2.

7. S step: (𝑋𝑛+1∕2, 𝑆3, 𝑉 𝑛+1) ↦ (𝑋𝑛+1∕2𝑆4, 𝑉 𝑛+1) using  𝑛+1∕2, 𝐸𝑛+1∕2.

8. K step: (𝑋𝑛+1∕2, 𝑆4, 𝑉 𝑛+1) ↦ (𝑋𝑛+1, 𝑆𝑛+1, 𝑉 𝑛+1) using  𝑛+1∕2, 𝐸𝑛+1∕2.

9. (𝑓𝑛
0 , 𝑓

𝑛
1 , 𝑓

𝑛
2 ) ↦ (𝑓𝑛+1

0 , 𝑓𝑛+1
1 , 𝑓𝑛+1

2 ) using 𝑔𝑛+1∕2, 𝐸𝑛+1∕2, and (𝑓0, 𝑓1, 𝑓2)𝑛+1∕2:

𝑓𝑛+1
0 − 𝑓𝑛

0
Δ𝑡

= 𝜕𝑥(−𝑏0𝑓
𝑛+1∕2
0 − 𝑎0𝑓

𝑛+1∕2
1 ), (3.33)

𝑓𝑛+1
1 − 𝑓𝑛

1
Δ𝑡

= 𝜕𝑥(−𝑎1𝑓
𝑛+1∕2
2 − 𝑏1𝑓

𝑛+1∕2
1 − 𝑎0𝑓

𝑛+1∕2
0 ) +𝐸𝑛+1∕2𝑑10𝑓

𝑛+1∕2
0 , (3.34)

𝑓𝑛+1
2 − 𝑓𝑛

2
Δ𝑡

= 𝜕𝑥(−𝑎2𝑓
𝑛+1∕2
3 − 𝑏2𝑓

𝑛+1∕2
2 − 𝑎1𝑓

𝑛+1∕2
1 ) +𝐸𝑛+1∕2(𝑑20𝑓

𝑛+1∕2
0 + 𝑑21𝑓

𝑛+1∕2
1 ), (3.35)

where

𝑓
𝑛+1∕2
3 =

∑
𝑖𝑗

𝑋
𝑛+1∕2
𝑖

𝑆
𝑛+1∕2
𝑖𝑗

⟨
𝑝3(𝑣)𝑉

𝑛+1∕2
𝑗

⟩
𝑣
.

Note that in step 9 we make use of 𝑔𝑛+1∕2, which is defined in terms of (𝑋𝑛+1∕2, 𝑆𝑛+1∕2, 𝑉 𝑛+1∕2). This means that we cannot easily 
combine steps 5 and 6 into a single substep of size Δ𝑡 as is common in Strang splitting schemes. To achieve overall second-order 
accuracy in time, each of the low-rank factor steps 3-8 must be accomplished using a standard time integration scheme that is at least 
second-order accurate. We choose the SSPRK2 scheme [18], which for an autonomous ordinary differential equation 𝑞′(𝑡) = 𝐹 (𝑞) is

𝑞∗ = 𝑞𝑛 +Δ𝑡𝐹 (𝑞𝑛) (3.36)

𝑞𝑛+1 = 𝑞𝑛

2
+ 1

2
(
𝑞∗ + Δ𝑡𝐹 (𝑞∗)

)
.

3.3.1. Proof of charge and energy conservation

Theorem 3.2. The second-order integrator satisfies local conservation of charge and total energy:

𝜌𝑛+1 − 𝜌𝑛

Δ𝑡
+ 𝜕𝑥𝐽

𝑛+1∕2 = 0, (3.37)

𝑒𝑛+1 − 𝑒𝑛

Δ𝑡
+ 𝜕𝑥

⟨
𝑣3

2
, 𝑓 𝑛+1∕2

⟩
𝑣

= 0, (3.38)
11

where 𝜌𝑛 and 𝑒𝑛 are defined as in (3.21) and (3.27) respectively, and 𝐽𝑛+1∕2 is defined as in (3.22) but at 𝑡𝑛+1∕2.



Journal of Computational Physics 509 (2024) 113055J. Coughlin, J. Hu and U. Shumlak

Proof. By (3.20), 𝑃Φ𝑉
𝑛
𝑗
= 𝟎, so ⟨𝑔𝑛,𝝓(𝑣)⟩𝑣 = 0 for all times 𝑛. Therefore, the only contributions to the charge and total energy 

come from 𝑓0, 𝑓1, 𝑓2 and 𝐸. From equations (3.33) and (3.35), by following the proof of Theorem 3.1 with fluxes and source terms 
evaluated at 𝑡𝑛+1∕2, we obtain

𝜌𝑛+1 − 𝜌𝑛

Δ𝑡
+ 𝜕𝑥𝐽

𝑛+1∕2 = 0, (3.39)

𝜅𝑛+1 − 𝜅𝑛

Δ𝑡
+ 𝜕𝑥

⟨
𝑣3

2
, 𝑓 𝑛+1∕2

⟩
𝑣

= 𝐽𝑛+1∕2𝐸𝑛+1∕2. (3.40)

Combining (3.40) with (3.32) and the definition of 𝐸𝑛+1∕2, we derive the stated total energy conservation law (3.38). □

Corollary 3.3. A fully discrete scheme for the second-order integrator of Section 3.3, which uses a conservative spatial discretization for the 
𝜕𝑥 operators appearing in equations (3.29)-(3.31) and (3.33)-(3.35) will satisfy exact discrete charge and energy conservation.

3.4. Substeps for low-rank factors

In this section we expand each of the low-rank factors’ equation of motion, (3.6), (3.7), (3.8). Our purpose is to demonstrate 
that the proposed algorithm is efficient in the sense of not requiring operations that have a computational cost of (𝑁𝑥𝑁𝑣), where 
𝑁𝑥, 𝑁𝑣 represent the degrees of freedom used to discretize 𝑥, 𝑣 respectively. To avoid proliferation of indices, in this section we 
consider only the case of simple Forward Euler steps used in the first-order integrator. The computational cost of the second-order 
integrator, whose substeps are themselves SSPRK2 steps, differs by only a constant factor.

The terms on the right-hand side of the K and S steps can be simplified by the following observation.

Proposition 3.1. Let the basis functions 𝑉 𝑛
𝑗

be evolved according to the first-order time integrator of Section 3.2. Then, for all ℎ(𝑣) ∈
𝐿2(Ω𝑣, 𝑤−1(𝑣)), the following identity holds for all 𝑉 𝑛

𝑗
(𝑣):⟨

𝑉 𝑛
𝑗 (𝑣), 𝑃

⟂
Φℎ(𝑣)

⟩
𝑤−1(𝑣)

=
⟨
𝑉 𝑛
𝑗 (𝑣), ℎ(𝑣)

⟩
𝑤−1(𝑣)

. (3.41)

Proof. Decompose ℎ(𝑣) as ℎ(𝑣) = 𝑃Φℎ(𝑣) + 𝑃⟂
Φℎ(𝑣), and use 

⟨
𝑉 𝑛
𝑗
(𝑣), 𝑃Φℎ(𝑣)

⟩
𝑤−1(𝑣)

= 0, since 𝑉 𝑛
𝑗

is orthogonal to the range of 
𝑃Φ. □

Applying boundary conditions in 𝑣 For a bounded velocity domain such as the finite difference discretization we will discuss below, 
we must apply a boundary condition in 𝑣. This is clear in the case of the L step, where the boundary condition is applied to a 
hyperbolic term. It is also true for the K and S steps, where the boundary condition is required for the evaluation of a derivative 
under an integral. In [27] the authors show how to treat boundary conditions in 𝑥 in the dynamical low-rank framework; we use 
the same approach. The idea is that the Dirichlet boundary condition 𝑔(𝑥, 𝑣𝑏, 𝑡) = − (𝑥, 𝑣𝑏, 𝑡) does not induce a boundary condition 
on the basis functions 𝑉𝑗 directly. Rather, by projecting onto 𝑋𝑖, we can see that the boundary condition should be applied to the 
weighted function basis 𝐿𝑖:

⟨𝑋𝑖, 𝑔(𝑥, 𝑣𝑏, 𝑡)⟩𝑥 =𝐿𝑖(𝑣𝑏, 𝑡) =
⟨
𝑋𝑖,− (𝑥, 𝑣𝑏, 𝑡)

⟩
𝑥
.

Then, when expanding the low-rank equations of motion, we interpret terms involving 𝜕𝑣𝑔 as 
∑

𝑘 𝑋𝑘𝜕𝑣𝐿𝑘, rather than the usual ∑
𝑘𝑙 𝑋𝑘𝑆𝑘𝑙𝜕𝑣𝑉𝑙 , with the plan of applying the boundary condition on 𝐿𝑘 in the course of evaluating the derivative.

Our assumption of periodic boundary conditions in 𝑥 saves us the trouble of performing the same transformation to terms 
involving 𝜕𝑥𝑔; however this poses no essential difficulty, and nontrivial nonperiodic boundary conditions in 𝑥 are a straightforward 
extension of this scheme.

K step We may expand (3.17) by substituting (3.1) into (3.6). Since the collisional moments 𝑢 and 𝑇 are held constant during the K 
step, at a time level 𝑡𝑛, we may write

𝑄( 𝑛 + 𝑔) =𝑄𝑛( 𝑛 + 𝑔) =𝑄𝑛( 𝑛) +𝑄𝑛(𝑔),

where

𝑄𝑛(𝑓 ) = 𝜈𝜕𝑣(𝑇 𝑛𝜕𝑣𝑓 + (𝑣− 𝑢𝑛)𝑓 ).

After using Proposition 3.1 to eliminate appearances of 𝑃⟂
Φ , this gives

𝐾𝑛+1
𝑗

−𝐾𝑛
𝑗 =

⟨
𝑉 𝑛,𝐷

[
𝐸∗, 𝑛,

∑
𝐾𝑛𝑉 𝑛

]⟩
(3.42)
12

Δ𝑡 𝑗
𝑙

𝑙 𝑙

𝑤−1(𝑣)



Journal of Computational Physics 509 (2024) 113055J. Coughlin, J. Hu and U. Shumlak

= −
⟨
𝑉 𝑛
𝑗 , 𝑣𝜕𝑥 𝑛 +𝐸∗𝜕𝑣 𝑛

⟩
𝑤−1(𝑣)

+
⟨
𝑉 𝑛
𝑗 ,𝑄

𝑛( 𝑛)
⟩
𝑤−1(𝑣)

−
∑
𝑙

⟨
𝑉 𝑛
𝑗 , 𝑣𝑉

𝑛
𝑙

⟩
𝑤−1(𝑣)

𝜕𝑥𝐾
𝑛
𝑙
−
∑
𝑘

𝑋𝑛
𝑘

⟨
𝑉 𝑛
𝑗 , 𝜕𝑣𝐿

𝑛
𝑘

⟩
𝑤−1(𝑣)

𝐸∗ (3.43)

+ 𝜈
∑
𝑘

𝑋𝑛
𝑘

[
𝑇 𝑛
⟨
𝑉 𝑛
𝑗 , 𝜕𝑣

2𝐿𝑛
𝑘

⟩
𝑤−1(𝑣)

+
⟨
𝑉 𝑛
𝑗 , 𝜕𝑣(𝑣𝐿

𝑛
𝑘
)
⟩
𝑤−1(𝑣)

− 𝑢𝑛
⟨
𝑉 𝑛
𝑗 , 𝜕𝑣𝐿

𝑛
𝑘

⟩
𝑤−1(𝑣)

]
,

where 𝐿𝑛
𝑖
=
∑

𝑗 𝑆
𝑛
𝑖𝑗
𝑉 𝑛
𝑗

. Derivative terms involving 𝐿𝑛
𝑖

are to be calculated using the projected boundary conditions on 𝐿:

𝐿𝑛
𝑖 (𝑣𝑏) =

⟨
𝑋𝑛

𝑖 ,− 𝑛(𝑥, 𝑣𝑏)
⟩
𝑥
.

Because some of the inner products appearing in (3.42) will also appear in the S step, we can save some computational effort by 
computing and saving the vectors and matrices in (3.42):

𝒚1𝑗 =
⟨
𝑉 𝑛
𝑗 , 𝑣𝜕𝑥 𝑛

⟩
𝑤−1(𝑣)

, 𝒚2𝑗 =
⟨
𝑉 𝑛
𝑗 ,𝐸

∗𝜕𝑣 𝑛
⟩
𝑤−1(𝑣)

, 𝒚3𝑗 (𝑥) =
⟨
𝑉 𝑛
𝑗 ,𝑄

𝑛( 𝑛)
⟩
𝑤−1(𝑣)

(3.44)

𝑨𝑗𝑙 =
⟨
𝑉 𝑛
𝑗 , 𝑣𝑉

𝑛
𝑙

⟩
𝑤−1(𝑣)

, 𝑫1
𝑗𝑘

=
⟨
𝑉 𝑛
𝑗 , 𝜕𝑣𝐿

𝑛
𝑘

⟩
𝑤−1(𝑣)

(3.45)

𝑫2
𝑗𝑘

=
⟨
𝑉 𝑛
𝑗 , 𝜕

2
𝑣𝐿

𝑛
𝑘

⟩
𝑤−1(𝑣)

, 𝑮𝑗𝑘 =
⟨
𝑉 𝑛
𝑗 , 𝜕𝑣(𝑣𝐿

𝑛
𝑘
)
⟩
𝑤−1(𝑣)

(3.46)

Cost: (3𝑟(𝑁𝑣 +𝑁𝑥) + 𝑟2𝑁𝑣), by taking advantage of the rank-3 structure of  .

Then the Forward Euler step for 𝐾 can be written concisely as

𝐾𝑛+1
𝑗

−𝐾𝑛
𝑗

Δ𝑡
= −𝒚1𝑗 − 𝒚2𝑗 + 𝒚3𝑗 −

∑
𝑙

𝑨𝑗𝑙𝜕𝑥𝐾
𝑛
𝑙
+
∑
𝑘

𝑋𝑛
𝑘

[
−𝐸∗𝑫1

𝑗𝑘
+ 𝜈(𝑇 𝑛𝑫2

𝑗𝑘
+𝑮𝑗𝑘 − 𝑢𝑛𝑫1

𝑗𝑘
)
]
.

Cost: (𝑟2𝑁𝑥).

Remark 2. Additional care must be taken in the implementation of the second-order integrator to ensure each of the intermediate 
vectors and matrices in (3.44) is defined and computed in terms of quantities with the correct time levels on the right-hand side.

S step Because the 𝑋𝑖 basis has been updated in the K step, we must re-project the boundary conditions in 𝑣 onto 𝑋𝑛+1
𝑖

. Define 
�̃�𝑖 =

∑
𝑗 𝑆

′
𝑖𝑗
𝑉 𝑛
𝑗

, then the projected boundary conditions are

�̃�𝑖(𝑣𝑏) =
⟨
𝑋𝑛+1

𝑖
,− 𝑛(𝑥, 𝑣𝑏)

⟩
𝑥
.

To expand (3.18), substitute (3.1) into (3.18) to obtain

𝑆′′
𝑖𝑗
−𝑆′

𝑖𝑗

Δ𝑡
= −

⟨
𝑋𝑛+1

𝑖
𝑉 𝑛
𝑗 ,𝐷

[
𝐸∗, 𝑛,

∑
𝑘𝑙

𝑋𝑛+1
𝑘

𝑆′
𝑘𝑙
𝑉 𝑛
𝑙

]⟩
𝑥,𝑤−1(𝑣)

(3.47)

=
⟨
𝑋𝑛+1

𝑖
𝑉 𝑛
𝑗 , 𝑣𝜕𝑥 𝑛 +𝐸∗𝜕𝑣 𝑛

⟩
𝑥,𝑤−1(𝑣)

−
⟨
𝑋𝑛+1

𝑖
𝑉 𝑛
𝑗 ,𝑄

𝑛( 𝑛)
⟩
𝑥,𝑤−1(𝑣)

+
∑
𝑘𝑙

𝑆′
𝑘𝑙

⟨
𝑋𝑛+1

𝑖
, 𝜕𝑥𝑋

𝑛+1
𝑘

⟩
𝑥

⟨
𝑉 𝑛
𝑗 , 𝑣𝑉

𝑛
𝑙

⟩
𝑤−1(𝑣)

+
∑
𝑘

⟨
𝑋𝑛+1

𝑖
,𝐸∗𝑋𝑛+1

𝑘

⟩
𝑥

⟨
𝑉 𝑛
𝑗 , 𝜕𝑣�̃�𝑘

⟩
𝑤−1(𝑣)

− 𝜈
∑
𝑘

[⟨
𝑋𝑛+1

𝑖
, 𝑇 𝑛𝑋𝑛+1

𝑘

⟩
𝑥

⟨
𝑉 𝑛
𝑗 , 𝜕𝑣

2�̃�𝑘

⟩
𝑤−1(𝑣)

(3.48)

+
⟨
𝑋𝑛+1

𝑖
,𝑋𝑛+1

𝑘

⟩
𝑥

⟨
𝑉 𝑛
𝑗 , 𝜕𝑣(𝑣�̃�𝑘)

⟩
𝑤−1(𝑣)

−
⟨
𝑋𝑛+1

𝑖
, 𝑢𝑛𝑋𝑛+1

𝑘

⟩
𝑥

⟨
𝑉 𝑛
𝑗 , 𝜕𝑣�̃�𝑘

⟩
𝑤−1(𝑣)

]
We can save computational effort again by precomputing certain matrices which will appear in the L step. First, compute

�̃�
1
𝑗𝑘 =

⟨
𝑉 𝑛
𝑗 , 𝜕𝑣�̃�𝑘

⟩
𝑤−1(𝑣)

�̃�
2
𝑗𝑘 =

⟨
𝑉 𝑛
𝑗 , 𝜕

2
𝑣�̃�𝑘

⟩
𝑤−1(𝑣)

, �̃�𝑗𝑘 =
⟨
𝑉 𝑛
𝑗 , 𝜕𝑣(𝑣�̃�𝑘)

⟩
𝑤−1(𝑣)

.

Cost: (𝑟2𝑁𝑣).
Then take advantage of the rank-3 structure of  to compute the inner products in both 𝑥 and 𝑣:

𝒁1
𝑖𝑗 =
⟨
𝑋𝑛+1

𝑖
𝑉 𝑛
𝑗 , 𝑣𝜕𝑥 𝑛

⟩
𝑥,𝑤−1(𝑣)

, 𝒁2
𝑖𝑗 =
⟨
𝑋𝑛+1

𝑖
𝑉 𝑛
𝑗 ,𝐸

∗𝜕𝑣 𝑛
⟩
𝑥,𝑤−1(𝑣)

,

𝒁3 =
⟨
𝑋𝑛+1𝑉 𝑛,𝑄𝑛( 𝑛)

⟩
.

13

𝑖𝑗 𝑖 𝑗
𝑥,𝑤−1(𝑣)
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Cost: (3𝑟2(𝑁𝑣 +𝑁𝑥)).
Finally, compute the matrices from inner products in 𝑥:

𝑩𝑖𝑘 =
⟨
𝑋𝑛+1

𝑖
, 𝜕𝑥𝑋

𝑛+1
𝑘

⟩
𝑥
, 𝑭 𝑖𝑘 =

⟨
𝑋𝑛+1,𝐸∗𝑋𝑛+1

𝑘

⟩
𝑥

𝑵 𝑖𝑘 =
⟨
𝑋𝑛+1

𝑖
, 𝑇 𝑛𝑋𝑛+1

𝑘

⟩
𝑥
, 𝛿𝑖𝑘 =

⟨
𝑋𝑛+1,𝑋𝑛+1

𝑘

⟩
𝑥
, 𝑸𝑖𝑘 =

⟨
𝑋𝑛+1, 𝑢𝑛𝑋𝑛+1

𝑘

⟩
𝑥
.

Cost: (𝑟2𝑁𝑥).
Now the Forward Euler step for 𝑆 can be written concisely as

𝑆′′
𝑖𝑗
−𝑆′

𝑖𝑗

Δ𝑡
=𝒁1

𝑖𝑗 +𝒁2
𝑖𝑗 −𝒁3

𝑖𝑗 +
∑
𝑘𝑙

𝑆′
𝑘𝑙
𝑩𝑖𝑘𝑨𝑗𝑙 −

∑
𝑘

[
−𝑭 𝑖𝑘�̃�

1
𝑗𝑘 + 𝜈(𝑵 𝑖𝑘�̃�

2
𝑗𝑘 + 𝛿𝑖𝑘�̃�𝑗𝑘 −𝑸𝑖𝑘�̃�

1
𝑗𝑘)
]

Cost: (𝑟4).
L step The L step is calculated similarly to the K and S steps. Because 𝑃⟂

Φ involves projecting only in 𝑣, it commutes with the 𝑥 inner 
product ⟨⋅⟩𝑥, which lets us pull the projection 𝑃⟂

Φ out of each low-rank projection. Recall that 𝑃⟂
Φ = 𝐼 − 𝑃Φ where 𝑃Φ is defined in 

(2.10) Plug (3.1) into (3.8) to obtain

𝐿𝑛+1
𝑖

−𝐿𝑛
𝑖

Δ𝑡
=

⟨
𝑋𝑛+1

𝑖
, 𝑃⟂

Φ𝐷

[
𝐸∗, 𝑛,

∑
𝑘

𝑋𝑛+1
𝑘

𝐿𝑛
𝑘

]⟩
𝑥

(3.49)

= −𝑃⟂
Φ
⟨
𝑋𝑛+1

𝑖
, (𝑣𝜕𝑥 𝑛 +𝐸∗𝜕𝑣 𝑛)

⟩
𝑥
+ 𝑃⟂

Φ
⟨
𝑋𝑛+1

𝑖
,𝑄𝑛( 𝑛)

⟩
𝑥

− 𝑃⟂
Φ

(∑
𝑘

𝑣
⟨
𝑋𝑛+1

𝑖
, 𝜕𝑥𝑋

𝑛+1
𝑘

⟩
𝑥
𝐿𝑛
𝑘
+
∑
𝑘

⟨
𝑋𝑛+1

𝑖
,𝐸∗𝑋𝑛+1

𝑘

⟩
𝑥
𝜕𝑣𝐿

𝑛
𝑘

)
(3.50)

+ 𝑃⟂
Φ 𝜈
∑
𝑘

[⟨
𝑋𝑛+1

𝑖
, 𝑇 𝑛𝑋𝑛+1

𝑘

⟩
𝑥
𝜕𝑣

2𝐿𝑛
𝑘
+
⟨
𝑋𝑛+1

𝑖
,𝑋𝑛+1

𝑘

⟩
𝑥
𝜕𝑣(𝑣𝐿𝑛

𝑘
) −
⟨
𝑋𝑛+1

𝑖
, 𝑢𝑛𝑋𝑛+1

𝑘

⟩
𝑥
𝜕𝑣𝐿

𝑛
𝑘

]
.

Compute vectors appearing in (3.49):

𝒛1𝑖 (𝑣) =
⟨
𝑋𝑛+1

𝑖
, 𝑣𝜕𝑥 𝑛

⟩
𝑥
, 𝒛2𝑖 (𝑣) =

⟨
𝑋𝑛+1

𝑖
,𝐸∗𝜕𝑣 𝑛

⟩
𝑥
, 𝒛3𝑖 (𝑣) =

⟨
𝑋𝑖,𝑄( 𝑛;𝑈 )

⟩
𝑥
.

Cost: (3𝑟(𝑁𝑣 +𝑁𝑥).
The Forward Euler step for 𝐿 can be written concisely as

𝐿𝑛+1
𝑖

−𝐿𝑛
𝑖

Δ𝑡
= 𝑃⟂

Φ (−𝒛1𝑖 (𝑣) − 𝒛2𝑖 (𝑣) + 𝒛3𝑖 (𝑣)) (3.51)

+ 𝑃⟂
Φ

[∑
𝑘

(−𝑣𝐿𝑛
𝑘
𝑩𝑖𝑘 − 𝑭 𝑖𝑘𝜕𝑣𝐿

𝑛
𝑘
+ 𝜈(𝑵 𝑖𝑘𝜕

2
𝑣𝐿

𝑛
𝑘
+ 𝛿𝑖𝑘𝜕𝑣(𝑣𝐿𝑛

𝑘
) −𝑸𝑖𝑘𝜕𝑣𝐿

𝑛
𝑘
))

]
. (3.52)

Cost: (𝑟2𝑁𝑣).
The total computational cost of all three substeps scales as (𝑟2(𝑁𝑥 +𝑁𝑣) + 𝑟4). The asymptotic advantages do not begin to tell 

in one dimension, but in 2D2V and 3D3V kinetic applications, we can easily have 𝑁𝑥, 𝑁𝑣 ≫ 𝑟2, in which case the efficiency gains 
from dynamical low-rank approximation are quite substantial.

4. Spatial discretization

In this section we discuss the discretization of the equations of Section 3 in 𝑥. We will continue to leave the 𝑣-discretization 
unspecified for now, continuing our formulation in terms of continuous inner products in 𝑣. In 𝑥, we use a simple finite difference 
scheme on an equispaced grid, with grid separation denoted Δ𝑥, and points 𝑥𝑖. Functions are approximated directly on the grid, so 
that 𝑢(𝑥𝑖) ≈ 𝑢𝑖. For discretization of the inner product ⟨⋅⟩𝑥 over physical space, we use the Trapezoidal rule. On periodic domains, the 
Trapezoidal rule has spectral convergence, while for nonperiodic domains, its second-order convergence is sufficient and matches 
the order of accuracy of our finite difference discretization of the hyperbolic terms, described below. The Poisson equation is solved 
using a standard centered finite difference stencil, also of second order accuracy. Finally, for non-hyperbolic first-order derivatives 
appearing inside of an inner product in 𝑥, we use a second-order centered finite difference approximation to 𝜕𝑥. Discussion of our 
hyperbolic finite difference discretization is below.

4.1. Finite difference discretization of hyperbolic terms

Because of the complexity of our time discretization, additional care is required to ensure that the overall hyperbolic structure of 
the kinetic equation is preserved in our discretization of 𝑥 and 𝑣. In particular, four of the equations described in Section 3 have an 
14

advective form, involving the 𝑥-derivative of one or more unknowns. Ignoring the other (source) terms in those equations, they are:
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𝜕𝑡

⎛⎜⎜⎝
𝑓0
𝑓1
𝑓2

⎞⎟⎟⎠+
⎛⎜⎜⎝
𝑏0 𝑎0 0
𝑎0 𝑏1 𝑎1
0 𝑎1 𝑏2

⎞⎟⎟⎠𝜕𝑥
⎛⎜⎜⎝
𝑓0
𝑓1
𝑓2

⎞⎟⎟⎠+ 𝜕𝑥

⎛⎜⎜⎝
0
0

𝑎2𝑓3

⎞⎟⎟⎠ =𝑅𝐻𝑆, (4.1)

and

𝜕𝑡𝐾𝑗 +
⟨
𝑉𝑗 , 𝑣𝜕𝑥⟩𝑤−1(𝑣) +

∑
𝑙

𝑨𝑗𝑙𝜕𝑥𝐾𝑙 =𝑅𝐻𝑆, (4.2)

where 𝑨𝑗𝑙 is defined according to (3.45).

Proposition 4.1. Equations (4.1) and (4.2) together form a globally hyperbolic system of partial differential equations.

Proof. Note that, by (2.7),⟨
𝑉𝑗, 𝑣𝜕𝑥⟩𝑤−1(𝑣) =

⟨
𝑉𝑗 , 𝑎2𝜕𝑥𝑓2(𝑥, 𝑡)𝑤(𝑣)𝑝3(𝑣)

⟩
𝑤−1(𝑣) =

⟨
𝑉𝑗 ,𝑤(𝑣)𝑝3(𝑣)

⟩
𝑤−1(𝑣) 𝑎2𝜕𝑥𝑓2(𝑥, 𝑡),

where we have used Proposition 3.1 to eliminate terms in the span of 𝑤(𝑣)𝐩(𝑣) inside the inner product. If we abbreviate the inner 
product by 

⟨
𝑉𝑗 ,𝑤(𝑣)𝑝3(𝑣)

⟩
𝑤−1(𝑣) = �̂�𝑗 , we can write the combined system in quasilinear form like so:

𝜕𝑡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑓0
𝑓1
𝑓2
𝐾1
𝐾2
⋮
𝐾𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑏0 𝑎0
𝑎0 𝑏1 𝑎1

𝑎1 𝑏2 𝑎2𝑞1 𝑎2𝑞2 … 𝑎2𝑞𝑟
𝑎2�̂�1

𝑨𝑗𝑙
𝑎2�̂�2
⋮

𝑎2�̂�𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑨0

𝜕𝑥

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑓0
𝑓1
𝑓2
𝐾1
𝐾2
⋮
𝐾𝑟

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=𝑅𝐻𝑆. (4.3)

Here we have rewritten 𝑓3(𝑥) as a linear combination of the 𝐾𝑗 (𝑥), with coefficients 𝑞𝑗 . Per (3.16), we have 𝑞𝑗 =
⟨
𝑝3(𝑣), 𝑉𝑗

⟩
𝑣
. But 

then

�̂�𝑗 =
⟨
𝑉𝑗,𝑤(𝑣)𝑝3(𝑣)

⟩
𝑤−1(𝑣) =

⟨
𝑉𝑗, 𝑝3(𝑣)

⟩
𝑣
= 𝑞𝑗 .

Additionally, it is clear from its definition that 𝑨𝑗𝑙 is symmetric. Therefore, the matrix 𝑨0 is symmetric, and thus is strictly hyperbolic 
with real eigenvalues. □

The hyperbolicity of the overall system gives us confidence in applying standard discretization techniques for hyperbolic conser-

vation laws. As a spatial discretization, we opt for a Shu-Osher conservative finite difference discretization based on upwind flux 
splitting. The hyperbolic system is always upwinded “all at once”, despite the fact that we solve the first three and the trailing 𝑟
equations separately.

To be precise, fix 𝑉𝑗 and let 𝑅Λ𝑅−1 = 𝑨0 be the eigendecomposition of 𝑨0(𝑉𝑗 ). Denote by 𝒘 the length-𝑟 + 3 vector 𝒘 =
[𝑓0, 𝑓1, 𝑓2, 𝐾1, … , 𝐾𝑟]𝑇 . Let 𝑃1 and 𝑃2 be the projection matrices consisting of the first three and trailing 𝑟 rows of an (𝑟 +3) × (𝑟 +3)
identity matrix; they select the rows of 𝒘 corresponding to 𝑓0, 𝑓1, 𝑓2 and 𝐾𝑗 respectively:

𝑃1𝒘 = [𝑓0, 𝑓1, 𝑓2]𝑇 , 𝑃2𝒘 = [𝐾1,𝐾2,… ,𝐾𝑟]𝑇 . (4.4)

The flux terms appearing in (4.1) can be written as⎛⎜⎜⎝
𝑏0 𝑎0 0
𝑎0 𝑏1 𝑎1
0 𝑎1 𝑏2

⎞⎟⎟⎠𝜕𝑥
⎛⎜⎜⎝
𝑓0
𝑓1
𝑓2

⎞⎟⎟⎠+ 𝜕𝑥

⎛⎜⎜⎝
0
0

𝑎2𝑓3

⎞⎟⎟⎠ = 𝑃1𝜕𝑥𝑨0𝒘, (4.5)

and the flux terms in (4.2) as⟨
𝑉𝑗, 𝑣𝜕𝑥⟩𝑤−1(𝑣) +

∑
𝑙

𝑨𝑗𝑙𝜕𝑥𝐾𝑙 = 𝑃2𝜕𝑥𝑨0𝒘. (4.6)

The combined flux of 𝑓0, 𝑓1, 𝑓2, and 𝐾𝑗 is 𝐹 (𝒘) =𝑨0𝒘. Notionally, we approximate 𝜕𝑥𝐹 (𝒘) by a conservative flux difference:

𝜕𝑥𝐹 (𝒘𝑛) = 1
Δ𝑥

(𝐹𝑖+1∕2 − 𝐹𝑖−1∕2),

where 𝐹𝑖+1∕2 is the numerical flux between cells 𝑖 and 𝑖 + 1. The numerical flux is split and upwinded according to the eigendecom-

position of 𝑨0. For example, a first-order upwind finite difference scheme would use

̂ ̂− ̂+ − −1 + −1
15

𝐹𝑖+1∕2 = 𝐹
𝑖+1∕2 + 𝐹

𝑖+1∕2 =𝑅Λ 𝑅 𝒘𝑖+1 +𝑅Λ 𝑅 𝒘𝑖. (4.7)
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In this work we use higher-order spatial reconstructions of the split flux, following the conservative finite difference framework of 
[38]. Except where noted, we use a MUSCL reconstruction with the Monotonized-Central limiter which is second-order in space. We 
then approximate the hyperbolic terms in (4.1) and (4.2) as

𝑃𝑠𝜕𝑥𝐹 (𝒘) = 𝑃𝑠
1
Δ𝑥
(
𝐹𝑖+1∕2 − 𝐹𝑖−1∕2

)
(4.8)

for 𝑃𝑠 ∈ {𝑃1, 𝑃2}. Importantly, we apply the projection 𝑃𝑠 after the flux splitting and upwind reconstruction. We base the upwinding 
procedure on the whole size 𝑟 + 3 eigenvector decomposition of 𝒘, rather than upwinding systems of size 3 and size 𝑟 separately.

5. Two velocity space discretizations

One of the benefits of our method is that it is generic over the choice of velocity space discretization. To illustrate this, we present 
a pair of velocity space discretizations based on orthogonal polynomial expansions, for which the polynomials 𝑝0, 𝑝1, 𝑝2 appear as 
the first three polynomials in one of the classical orthogonal polynomial families.

The first discretization we will discuss is a global Hermite spectral method, for which 𝑝0, 𝑝1, 𝑝2 naturally enter as the first 
three Hermite polynomials. This method lets us discretize an unbounded velocity domain without arbitrary truncation. The second 
discretization uses a truncated velocity space, with 𝑝0, 𝑝1, 𝑝2 chosen as the first three scaled Legendre polynomials. The resulting 
equations for the non-conserved part 𝑔 are solved with a standard upwind finite difference method. Our aim with this pair of 
discretizations is to demonstrate the flexibility of the underlying macro-micro decomposition, which may be combined with whatever 
velocity space discretization is most convenient for the problem at hand.

5.1. Asymmetrically-weighted Hermite spectral method

This section derives a global spectral expansion for the low-rank component 𝑔 in terms of the asymmetrically weighted, nor-

malized Hermite polynomials. Expansions in terms of Hermite polynomials enjoy a long history in numerical methods for kinetic 
equations. An important distinction is that between “centered” Hermite expansions, which expand in polynomials which are orthog-

onal with respect to the local Maxwellian, and “uncentered” expansions. The latter use a fixed Gaussian distribution as the weight 
function for the polynomial family, and pay for their greatly increased simplicity with less rapid convergence. Perhaps the most 
famous example of a centered Hermite expansion is Grad’s moment method [19]. Our method is an uncentered method, of which 
many examples have been developed in recent years. The use of an uncentered global Hermite expansion in velocity space may be 
coupled with a choice of physical space discretization; we highlight examples using Discontinuous Galerkin [31,16] and Fourier spec-

tral [6,40] methods in 𝑥. As described in Section 4, in this work we use a flux-limited high-resolution conservative finite difference 
scheme in 𝑥.

In terms of our notation, the Hermite polynomials are the orthogonal polynomial family defined on Ω𝑣 =ℝ with weight function

𝑤(𝑣) = 1
𝑣0
√
2𝜋

𝑒
− 𝑣2

2𝑣20 ,

where 𝑣0 is a reference velocity which sets the width of the basis. The Hermite polynomials satisfy the following orthogonality 
relation:

∫
Ω𝑣

𝑤(𝑣)𝐻𝑒𝑛

(
𝑣

𝑣0

)
𝐻𝑒𝑚

(
𝑣

𝑣0

)
d𝑣 = 𝛿𝑛𝑚.

Their three-term recurrence relation has coefficients 𝑎𝑛 = 𝑣0
√
𝑛+ 1 and 𝑏𝑛 = 0 [35]. The first several Hermite polynomials are

𝑝0(𝑣) =𝐻𝑒0

(
𝑣

𝑣0

)
= 1 𝑝2(𝑣) =𝐻𝑒2

(
𝑣

𝑣0

)
=

(𝑣∕𝑣0)2 − 1√
2

𝑝1(𝑣) =𝐻𝑒1

(
𝑣

𝑣0

)
= 𝑣∕𝑣0 𝑝3(𝑣) =𝐻𝑒3

(
𝑣

𝑣0

)
=

(𝑣∕𝑣0)3 − 𝑣∕𝑣0√
6

.

From these definitions, it is simple to verify the identities

𝑣 = 𝑣0𝑝1(𝑣),
𝑣2

2
=

𝑣20
2
(
√
2𝑝2(𝑣) + 1),

or in terms of the matrix 𝐶 ,

𝐶 =
⎛⎜⎜⎜⎝
1 0 0
0 𝑣0 0
𝑣20
2 0

𝑣20√
2

⎞⎟⎟⎟⎠ .
16

The derivative coefficients are
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𝑑10 =
1
𝑣0

, 𝑑20 = 0, 𝑑21 =
√
2

𝑣0
.

We search for a solution 𝑓 = + 𝑔 where 𝑔 is expanded in terms of the first 𝑀 + 1 Hermite polynomials,

𝑔(𝑥, 𝑣, 𝑡) =
𝑀∑
𝑛=0

𝑤(𝑣)𝐻𝑒𝑛

(
𝑣

𝑣0

)
𝑔𝑛(𝑥, 𝑡) =𝑯𝑇

𝑀
𝒈.

We have expressed the sum in our preferred notation, which considers the sequence of asymmetrically weighted Hermite polynomials 
as a vector which may be combined via a dot product with the vector of coefficients, 𝒈(𝑥, 𝑡).

The weighted inner product ⟨⋅⟩𝑤−1(𝑣) is discretized as the discrete dot product of two coefficient vectors, as demonstrated by the 
following sequence of identities:

∫
Ω𝑣

𝑤−1(𝑣)𝑔(𝑣)ℎ(𝑣) d𝑣 = ∫
Ω𝑣

𝑤−1(𝑣)

(
𝑀∑
𝑛=0

𝑤(𝑣)𝐻𝑒𝑛

(
𝑣

𝑣0

)
𝑔𝑛

)(
𝑀∑
𝑚=0

𝑤(𝑣)𝐻𝑒𝑚

(
𝑣

𝑣0

)
ℎ𝑚

)
d𝑣

=
𝑀∑
𝑛=0

𝑀∑
𝑚=0

𝑔𝑛ℎ𝑚 ∫
Ω𝑣

𝑤(𝑣)𝐻𝑒𝑛

(
𝑣

𝑣0

)
𝐻𝑒𝑚

(
𝑣

𝑣0

)
d𝑣

=
𝑀∑
𝑛=0

𝑀∑
𝑚=0

𝑔𝑛ℎ𝑚𝛿𝑛𝑚

= 𝒈𝑇 𝒉.

The required differentiation operators in the normalized Hermite basis are discretized by the following matrices, which may be 
derived from the recurrence relations for the weighted Hermite polynomials [35]:

𝜕𝑣(𝑯𝑇
𝑀
𝒈) = 1

𝑣0
𝑯𝑇

𝑀

⎛⎜⎜⎜⎜⎜⎝

0
−1

−
√
2

−
√
3

⋱

⎞⎟⎟⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟



𝒈, 𝜕𝑣(𝑣(𝑯𝑇
𝑀
𝒈)) =𝑯𝑇

𝑀

⎛⎜⎜⎜⎜⎜⎝

0
0 −1

−
√
2 0 −2

−
√
6 0 −3

⋱ ⋱

⎞⎟⎟⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ξ

𝒈,

𝜕2𝑣(𝑯
𝑇
𝑀
𝒈) = 1

𝑣20

𝑯𝑇
𝑀

⎛⎜⎜⎜⎜⎜⎝

0
0√
2 √

6
⋱

⎞⎟⎟⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

𝒈, 𝑣(𝑯𝑇
𝑀
𝒈) = 𝑣0𝑯

𝑇
𝑀

⎛⎜⎜⎜⎜⎝
0 1
1 0

√
2√

2 0
√
3

⋱ ⋱

⎞⎟⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ξ

𝒈 (5.1)

Finally, the projection 𝑃Φ can be discretized as the operation which discards all but the first three Hermite coefficients, and conversely 
𝑃⟂
Φ as the operation which sets the first three Hermite coefficients to zero:

𝑃Φ𝑓 (𝑣) =𝑯𝑇
𝑀

⎛⎜⎜⎜⎜⎜⎜⎝

𝑓0
𝑓1
𝑓2
0
0
⋮

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝑃⟂

Φ𝑓 (𝑣) =𝑯𝑇
𝑀

⎛⎜⎜⎜⎜⎜⎜⎝

0
0
0
𝑓3
𝑓4
⋮

⎞⎟⎟⎟⎟⎟⎟⎠
The discrete operators defined above completely specify a velocity space discretization of our scheme.

5.1.1. Spectral filtering of Hermite modes

In order to avoid numerical instability due to the Gibbs phenomenon, we apply a filter to the vector of Hermite modes after each 
timestep. Following [16], we employ the filter known as Hou-Li’s filter [26] which prescribes multiplying the 𝑚th Hermite mode by 
a scaling factor 𝜎

(
𝑚

𝑀+1

)
, where

𝜎(𝑠) =

{
1, 0 ≤ 𝑠 ≤ 2∕3,
−𝛽𝑠𝛽 (5.2)
17

𝑒 𝑠 > 2∕3,
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with 𝛽 = 36 designed to eliminate the final mode to within machine precision. This filter is applied after each completed L step, i.e. 
step 5 in the first-order integrator and steps 5-6 in the second-order integrator.

5.2. Truncated domain finite difference method with Legendre weight

While global spectral methods for velocity space such as the Hermite method exhibit high accuracy and are easy to implement, 
they are not the only option available, nor the best in all circumstances. Grid-based methods, in particular Discontinuous Galerkin 
methods, are often preferred for their better resolution of fine filamentation structures in velocity space [25,24]. In particular, unlike 
Hermite spectral methods, grid-based methods do not suffer from degraded resolution when the drift velocity or temperature of the 
local solution differs too much from the “reference” velocity and temperature around which the polynomial basis is expanded.

To illustrate the flexibility of our scheme to accomodate a variety of velocity discretizations including grid-based methods, in this 
section we describe a finite difference discretization of a truncated velocity space with the macro-micro decomposition based on the 
Legendre polynomials 𝑃𝑖(𝑣).

Our truncated velocity domain is Ω𝑣 = [−𝑣𝑚𝑎𝑥, 𝑣𝑚𝑎𝑥], with the constant weight function

𝑤(𝑣) = 1
𝑣𝑚𝑎𝑥

.

The Legendre polynomials scaled to Ω𝑣 satisfy the orthogonality relation

∫
Ω𝑣

𝑤(𝑣)𝑃𝑛

(
𝑣

𝑣𝑚𝑎𝑥

)
𝑃𝑚

(
𝑣

𝑣𝑚𝑎𝑥

)
d𝑣 = 𝛿𝑛𝑚.

The recurrence relation for the orthonormal Legendre polynomials has coefficients

𝑎𝑛 =
𝑛+ 1√

(2𝑛+ 1)(2𝑛+ 3)
𝑣𝑚𝑎𝑥, 𝑏𝑛 = 0,

and the first several examples are

𝑝0(𝑣) = 𝑃0

(
𝑣

𝑣𝑚𝑎𝑥

)
=
√

1
2

𝑝2(𝑣) = 𝑃2

(
𝑣

𝑣𝑚𝑎𝑥

)
=
√

5
8

(
3
(

𝑣

𝑣𝑚𝑎𝑥

)2
− 1

)

𝑝1(𝑣) = 𝑃1

(
𝑣

𝑣𝑚𝑎𝑥

)
=
√

3
2

𝑣

𝑣𝑚𝑎𝑥
𝑝3(𝑣) = 𝑃3

(
𝑣

𝑣𝑚𝑎𝑥

)
=
√

7
8

(
5
(

𝑣

𝑣𝑚𝑎𝑥

)3
− 3 𝑣

𝑣𝑚𝑎𝑥

)
.

From the first three Legendre polynomials it is easy to verify the identities

𝑣 =
√

2
3
𝑣𝑚𝑎𝑥𝑝1(𝑣),

𝑣2

2
=

𝑣2𝑚𝑎𝑥
6

(√
8
5
𝑝2(𝑣) + 1

)
,

or in terms of the matrix 𝐶 ,

𝐶 =

⎛⎜⎜⎜⎜⎝

√
2 0 0

0
√

2
3𝑣𝑚𝑎𝑥 0

𝑣2𝑚𝑎𝑥
6 0

√
8
5
𝑣2𝑚𝑎𝑥
6

⎞⎟⎟⎟⎟⎠
.

The derivative coefficients 𝑑10, 𝑑20, 𝑑21 are as follows:

𝑑10 =
√
3

𝑣𝑚𝑎𝑥
, 𝑑20 = 0, 𝑑21 =

√
15

𝑣𝑚𝑎𝑥
.

We discretize velocity space using a finite difference discretization. The hyperbolic term in the L step, equation (3.51), is discretized 
using a piecewise-linear MUSCL reconstruction with the monotonized-central (MC) slope limiter and a Lax-Friedrichs numerical 
flux. Second-order derivatives in 𝑣 are discretized using a second-order centered finite difference operator. Inner products in 𝑣 are 
computed using the midpoint rule. Boundary conditions on 𝑔 are implemented via extrapolation of the Dirichlet boundary condition 
𝑔(𝑥, 𝑣𝑏, 𝑡) = − (𝑥, 𝑣, 𝑡) into a ghost cell layer that is two cells wide.

6. Numerical results

In this section we provide numerical results from standard benchmark problems in computational plasma physics. All benchmarks 
are implemented in both the global Hermite and finite difference velocity discretizations. For the Hermite discretization we use 

𝑣0 = 1.0 corresponding to a weight function 𝑤(𝑣) = 1√
2𝜋
𝑒
− 𝑣2

2 . For the finite difference discretization, we use 𝑣𝑚𝑎𝑥 = 8.0. Except 
18

where otherwise indicated, we use the second-order time integrator and neglect collisions, 𝜈 = 0.0.
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Fig. 1. Convergence plot demonstrating first and second-order accuracy in time of the respective time integrators. The first-order integrator is unstable for Δ𝑡 =
8 × 10−3 .
19

Fig. 2. Weak Landau damping example, demonstrating exact conservation of charge and energy with the second-order time integrator.
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Fig. 3. Collisional Landau damping example.

6.1. Verification of second-order temporal accuracy

To verify the claimed second-order accuracy of the splitting scheme described in Section 3.3, we perform a convergence study 
using the weak Landau damping numerical test of Section 6.2. This is solved using a fifth-order WENO finite difference discretization 
[39] in space with 𝑁𝑥 = 128 grid points, and the Hermite spectral discretization in velocity with 𝑀 = 256. The first-order scheme 
is run with Δ𝑡 ranging from 4 × 10−3 to 1.25 × 10−4, while the second-order scheme is run with Δ𝑡 from 8 × 10−3 to 5 × 10−4. 
Convergence is observed by comparing the solution 𝑓 (Δ𝑡) with the refined solution 𝑓 (Δ𝑡∕2) at time 𝑡 = 5.0, and taking the 𝐿2 norm 
of the difference. The results are shown in Fig. 1. We observe excellent agreement between the theoretical and empirical rates of 
convergence for both integrators.

6.2. Weak Landau damping

As a physics test, we reproduce the ubiquitous weak Landau damping benchmark problem with wavenumber 𝑘 = 0.5 using both 
the Hermite spectral discretization and the Legendre-weighted finite difference discretization in velocity.

The initial condition is

𝑓0(𝑥, 𝑣) = (1 + 𝛿 cos(𝑘𝑥))𝑒−𝑣2∕2, 𝑥 ∈ (0,2𝜋∕𝑘).

The perturbation size is set to 𝛿 = 1 × 10−3. The domain is discretized with 𝑁𝑥 = 128 points in the 𝑥 direction and with either 
20

𝑀 = 256 Hermite modes or 𝑁𝑣 = 256 velocity grid points. The rank is set to 𝑟 = 6. We run the simulation with the second-order 
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Fig. 4. Strong Landau damping example.

integrator to time 𝑡 = 40, using timesteps of Δ𝑡 = 2 × 10−3. The result is shown in Fig. 2. We measure a damping rate of 𝛾 = −0.1525
for the Hermite spectral discretization and 𝛾 = −0.1523 for the finite difference discretization of velocity space, demonstrating good 
agreement with the linear theory prediction of 𝛾 = −0.153.

Collisional Landau damping We validate the correctness of our solver including collisionality by comparing the Landau damping 
phenomenon at a variety of collision frequencies 𝜈. We solve the same weak Landau damping problem as above, but with the 
collision frequency 𝜈 set to 0.0, 0.25, and 1.0. The Hermite spectral solver is run with 𝑀 = 256 and Δ𝑡 = 2 × 10−3, the same as the 
collisionless example. In contrast, the finite difference velocity discretization becomes more stiff as the diffusive collision term grows 
larger, so for that discretization we reduce both the velocity grid spacing and timestep to 𝑁𝑣 = 128 grid points and Δ𝑡 = 5 × 104. The 
results are shown in Fig. 3.

6.3. Strong Landau damping

In this example we use the same wavenumber and domain as the weak Landau damping problem, 𝑘 = 0.5, but set 𝛿 = 0.5 to 
explore the strong (nonlinear) Landau damping regime. Again we present results from both the Hermite spectral and finite difference 
discretizations in velocity space. The simulation is run with 𝑟 = 16, on a grid with 𝑁𝑥 = 128 grid points in 𝑥, and either 𝑀 = 256
Hermite modes or 𝑁𝑣 = 256 velocity grid points. The timestep is set to Δ𝑡 = 4 × 10−3, and the initial condition is evolved using the 
second-order energy-conserving integrator to 𝑡 = 50.0. The results are shown in Fig. 4, including the phase space density at 𝑡 = 25.0. 
21

Conservation properties of both first and second order integrators on this strong Landau damping problem are shown in Fig. 5.



Journal of Computational Physics 509 (2024) 113055J. Coughlin, J. Hu and U. Shumlak

Fig. 5. Conservation plots in the strong Landau damping example. We observe the benefit of overall second-order accuracy in the improved conservation of current 
in (b), compared to the conservation error of energy in (a).

6.4. Two-stream instability

Here we reproduce the two-stream instability example from [16]:

𝑓 (𝑥, 𝑣,0) = 2
7
(1 + 5𝑣2)(1 + 𝛿((cos(2𝑘𝑥) + cos(3𝑘𝑥))∕1.2 + cos(𝑘𝑥))) 1√

2𝜋
𝑒−𝑣

2∕2,

with 𝛿 = 0.01, 𝑘 = 0.5. This form of the distribution function is chosen to give the following analytic forms for the zeroth and second 
Hermite moments:

𝑓Hermite
0 (𝑥,0) = 12

7
(1 + 𝛿((cos(2𝑘𝑥) + cos(3𝑘𝑥))∕1.2 + cos(𝑘𝑥))),

𝑓Hermite
2 (𝑥,0) =

10
√
2

7
(1 + 𝛿((cos(2𝑘𝑥) + cos(3𝑘𝑥))∕1.2 + cos(𝑘𝑥))).

We run this simulation on a grid with 𝑁𝑥 = 256 grid points in 𝑥. For the Hermite spectral discretization we use 𝑀 = 256 Hermite 
modes, and for the finite difference discretization we use 𝑁𝑣 = 256 velocity grid points. The rank is set to 𝑟 = 20, and the instability 
22

is evolved with Δ𝑡 = 4 × 10−3 well into the nonlinear phase, up to 𝑡 = 50.0. The results are shown in Fig. 6.
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Fig. 6. Two-stream instability.

7. Conclusion

We have demonstrated a novel macro-micro decomposition which separates the particle distribution function 𝑓 into a rank-3 
macroscopic portion which shares the moments of 𝑓 , and a microscopic part which may be evolved in the dynamical low-rank 
approximation framework. This separation leads to a method which shares the efficiency benefits of the standard DLR approach 
23

while preserving conservation of charge, current, and kinetic energy density. Our macro-micro decomposition can be combined with 
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appropriate temporal and spatial discretizations to obtain schemes which exactly conserve charge and either current or total energy, 
and exhibit second-order accuracy in time on our test problems.

To construct the decomposition, we use the orthogonal polynomial family corresponding to a weighted inner product over velocity 
space to form an orthogonal projection which effectively separates the macroscopic and microscopic portions of 𝑓 . Our approach 
has the benefit of supporting both infinite and truncated velocity domains. Because the decomposition happens at the equation level, 
one can choose any discretization of velocity space which is suitable for the application at hand. To demonstrate this flexibility, we 
have implemented both a Hermite global spectral discretization and a conservative finite difference discretization of velocity space.

As a proof of concept, we have implemented this scheme in one dimension, demonstrating the effectiveness of the approach on 
standard plasma test problems. We anticipate that extending the scheme to multiple dimensions should pose no essential difficulty, 
since one can obtain a similar macro-micro decomposition based on tensor products of orthogonal polynomials. Similarly, applying 
our scheme to the full Vlasov-Maxwell system would capture fully electromagnetic physics without disproportionate complications.
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