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@ Plasma kinetic equations: numerical challenges
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The Vlasov-Fokker-Planck system

First-principles model for plasma behavior:

Otfo + v - Vify + (E+va) Vil = Clfa, f5] =
B
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The Vlasov-Fokker-Planck system

First-principles model for plasma behavior:

o _ _
atfa+v-vxfa+E(E+v x B) - Vi fy, = %:C[fa,fg] =C,
Clfas 3] = Vy - [Dag - Viufa — Unpfal

Many models of the drift and diffusion factors are possible:
@ Rosenbluth potential formulation [14], [13]:

Daﬁ = V\,V\,GB, Uag = VVHB

The potentials G, H are found by inverting a Poisson operator.

@ Single species Dougherty-Fokker-Planck operator [6]:

Doo = Vt2h]17 Uaa = uq = <Vfa>v
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Asymptotic limits reduce computation

Normalization reveals parameters of interest [12]:
— - 0 Zo = _
Osfy +V - Vify + (wpT) A_E -Vt
(67

+ (wcT)j—a(v < B)- Vof = (p7)Ca

«

Relative strength of collisions is vp7 = Kn~1: proton collision times per
characteristic time 7.
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Asymptotic limits reduce computation
Normalization reveals parameters of interest [12]:

- 2Z

O¢fo + ¥ - Vo + (wpT) i E.Vify
+ (wcT)j—a(\_/ X B) - Vif, = (VPT)EQ

Relative strength of collisions is vp7 = Kn~1: proton collision times per
characteristic time 7.
@ (vp7) > 1: Hydrodynamic limit. Fluid models are appropriate. d =3
e 13N and above moment models may push range of viability to
moderate collisionalities, (v,7) &~ 102 [12]
o (vp7) < 1, (weT) > 1: Gyrokinetic models are possible in highly
magnetized plasmas. d =5

@ (vp7) < 1: in the absence of simplifying asymptotics, the full kinetic
equation must be solved. d =6
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Low-rank approximation

Lesson from big data

@ Almost all huge matrices are extremely (numerically) rank deficient.
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Low-rank approximation

Lesson from big data

@ Almost all huge matrices are extremely (numerically) rank deficient.

Meaning: a truncated SVD is a good approximation.
Ac RN — A=uzvT

A, £ U(,l;r)z(l:r,l:r)v(-li:r,)

Truncated SVD requires much less storage:

r< M,N = rM+r? 4+ N < MN
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Low-rank approximation

Handles at least some numerical difficulties with ease [5]

r
Fx,v) = > Xi(x)S;Vi(v)
]
l(')tf(t,z,v)Jrszf(t,z,v) =0
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Low-rank approximation

Handles at least some numerical difficulties with ease [5]

2
f(x,v) = Z Xi(x)Sij V;(v)
ij
l@tf(t,w,v)+v6,f(t,z,v) =0

= V' + .H
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© Dynamical Low-Rank Approximation
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History of dynamical low-rank method

The dynamical low-rank method is a promising direction for reduced
plasma models.

@ Proposed by Koch and Lubich for ODEs (2007) [8]

@ Extended to higher-order tensors in various formats [9], [11]

@ Overapproximation-insensitive integrators developed [10], [1]

@ Applied to kinetic equations (2018, 2021) [5], [3]
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Example low-rank kinetic approximation

Consider an arbitrary equation of “kinetic type™
Oef(x,v,t)=h

Look for approximate solutions of the form

f= Z Xi(x, £)Si(£)Vi(v, t).

ij=1

@ The integer r is the rank

@ Bases X and V are orthonormal:

(Xi, Xi)x = 0, (Vj, Vi)y = 0jt

@ Similar to the SVD, except that S is not necessarily diagonal.
e —> the decomposition is not unique.
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What makes it dynamical?

We impose a Galerkin condition on the time derivative of the system:

(h—h,6f) =0 forall of € T:M,.

@ M, is the manifold of low-rank functions
@ T:M, is the tangent space to the manifold at f.

@ his our low-rank time derivative.

Figure: The method takes steps along the low-rank manifold’s tangent space.
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Projector-splitting integrator

Equivalently, h = P(f)h for an orthogonal projection P(f).
It turns out that P has the form

F = P(F)h = Xi(Xi, b)x — Xi(XiVi, BV + (Vi ) Vs

An operator splitting of the projector leads to a simple first order time
integration scheme:

Fl = F(tg) + At(Vi(V}, b))
F/r=F — AH(X; (X Vi, ) V)
f(tl) —f + At((Xi, h)xX;).
The scheme is:

@ Exact if f has rank r.

@ Robust to overapproximation: S can have vanishing singular values!
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Pros and Cons

Solving r equations of size N, and r of size N, is much cheaper than
solving one equation of size Ny N, .
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Pros and Cons

Solving r equations of size N, and r of size N, is much cheaper than
solving one equation of size Ny N, .

But does it preserve structure?

@ Mass, momentum and energy conservation ?

e The approximation can “leak” conserved quantities into the truncated
ranks.
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Pros and Cons

Solving r equations of size N, and r of size N, is much cheaper than
solving one equation of size Ny N, .

But does it preserve structure?

@ Mass, momentum and energy conservation ?

e The approximation can “leak” conserved quantities into the truncated
ranks.

@ Maxwellian asymptotic limit

e A Maxwellian with spatially varying parameters is not low-rank.

e Solution near fluid limit is just as costly as kinetic regime. We're
leaving structure on the table! ?

?Einkemmer ([4]) presents a conservative low-rank scheme.

bEinkemmer, Hu et.al ([2], [3]) show that preserving the fluid limit is
possible for BGK.
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© An asymptotic-preserving low-rank method
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A simple collisional plasma model

Test case: high-field limit of the Vlasov-Ampere-Fokker-Planck system

Ohf +v-Vif +1E-V,f =1V, (vf + V,f),
6tE:—J

@ The current density J is defined J = (vf),.

@ Physically, can describe high-frequency motion of electrons against a
static ion background fluid.
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Limiting distribution

Define the local “Maxwellian”
_v—E(x,1)?
M(x,v,t)=e 2
Then our Vlasov-Fokker-Planck equation is

Of +v -V f = %vv MY (M),

As € — 0, f approaches

£ = (2";(;3/2%

for the density p(x) = (f),.
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Limiting fluid system

What is the governing equation for p in the € — 0 limit?
@ Multiply by 1 and v and integrate:

8tp+VXJ:0
1
O+ V- (vavf), = Z(pE—J).

@ Send e — 0:

pE—J=0

dep+ Vx - (pE) =0,
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The Asymptotic-preserving property

Cfluid . f = #M, where 0tp+ A\ (pE) =0

{ck‘"et‘c L Of +v-Vif =1V, [MV, (M),
(2m)d/2

Both coupled with Ampere’s equation.
We're looking for a kinetic discretization DX"eti¢ that makes this diagram

commute:
At,x,v—0; r—oo

Dkinetic Ckinetic
le—)O le—>0
pfiuid At,x,v—0 , (fluid

Goal: the bottom path should hold for fixed r.
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Low-rank algorithm

Key idea: evolve low-rank representation of g = M~1f:

p(x)
eniz" = &7 anyr

e—0 = f—

Recall the low-rank ansatz is

glx,v,t)= Zth i(t)Vi(v,t).

ij=1

Plug f = gM into the Vlasov-Fokker-Planck equation:

h&oig=-v-V (8tM—|—v V<M)g

x8 — M
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Projector-splitting integration

Introduce auxiliary bases K and L:

Ki(x, t) = ZX,'(X, t)Sii(t), Li(v,t) = ZS,-J-(t)VJ-(v, t).

Org =Y 0KV — > XidSiVi+ > XL
J ] i
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Projector-splitting integration: K step
Org =Y 0iK;V; —
j

8tKj = _Z(VXK/) ’ <VVjv V’>V - Z K/<Vj> V/M>v
/ /

+ % D KIVi(Vy = v) - Vo Vi)y + E - (V;Vy Vi),
/

O Advance K/ to Kj"+1 via 0:Kj = (Vj, h),.
@ Perform a QR decomposition of Kj’”’1 to obtain X1 §’.
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Projector-splitting integration: S step

Org = — > Xi0:SyVy +

)

0eSip = Sk(XiVuXix - (VWiVihy + D Si(XiXe Vi ViM)
kil kil
1
T e (Z Sk [(XiXi)x (Vi(Vy = v) - Vo Vidy + (X XeE ) - <vjvvv/>v1> :
kl

o
© Advance S' to §” via 0;Sj = —(X;Vj, h)xv.
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Projector-splitting integration: L step

8tg = + inatL,'

OeLi = = v (Xi(VaXi)hxli — > (XiXeM) Ly
k k

+ % (Z [(XiXe)x(Vy — v) + (XiXkE)x] - Vva) :
k

(2]

(3]

Q Advance L7 to LI via 9;L; = (Xi, h)x.

© Perform a QR decomposition of L;’H to obtain V"1 St
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Discretization

Second-order central finite difference for diffusive part in v

Flux-limited Lax-Wendroff scheme for hyperbolic advection in x

First-order-in-time IMEX scheme to handle coupled advective-diffusive
PDEs

Care required for ill-posed ODE
0¢Sij = —(XiVih)xv.
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Results

Small-e¢ dynamics are captured with very few ranks, while kinetic dynamics

require higher rank:

6
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Results

Our method reproduces dynamics through a range of regimes

o,
o,
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02
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Performance gains

We verify the expected O(rNy + rN,) asymptotic complexity of our
implementation:

N Low Rank Full Tensor
r=>5 r=10 r=15
24 1.00 /- 2.14 / - 3.89 /- 13.8 / -
48 3.21 / 1.7 7.94 / 1.9 144 / 1.9 | 256 / 4.2
72 105/21 236/22 467 /23| 15e3/4.3
96 18.6 / 2.1 383 / 2.1 b54.7 / 1.9 | 5.3e3 / 4.3
120 292 /21 522 /2.0 839/1.9 | 1.23¢4 /4.2

Table: Computational runtime per time step of the 2D2V potential hill problem.
Runtimes are normalized to the r = 5, N = 24 size. The bolded numbers are the

empirical exponent of N. We see agreement with the expected asymptotic

complexity of 2 for the low-rank case, compared with 4 for the full tensor solver.
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@ Challenges and Future work
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Structure preservation remains a challenge

Projection of the collision operator disrupts its properties. We start with
the well-behaved
M=V, - (MV,g) =0

The kernel is just constant functions. When projected. ..
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Structure preservation remains a challenge

Projection of the collision operator disrupts its properties. We start with
the well-behaved

M=V, - (MV,g) =0
The kernel is just constant functions. When projected. ..
SuM IV, - (MkVyLi) + e - Vyly =0
7|vfekk\2
eik = (Xi, EXk)x, My =e" 2

It's unclear how to prove the kernel of this operator.
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Fast projection of the Maxwellian

A key step in this and similar schemes is computing projections of the
Maxwellian. For example,

J = XiSi{vVj, M(x,v))y.
ij

Computing this integral costs N, N, in a naive approach.
The situation is improved for an isothermal Maxwellian, where the integral
has a convolution structure:

_lv—E?

(vWiM(x,v)), = / vVj(v)em 2 dv

so may be computed with an FFT.
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A couple extensions

@ Rank adaptivity: It is possible to dynamically update the rank by
monitoring the quality of the approximation o,/01. (applied to
nonlinear Boltzmann—Hu and Wang (2021) [7]).

@ Tensor decomposition: Einkemmer (2018) [5] employs a hierarchical
tensor decomposition to decompose the order-4 tensor f(xi, x2, vi, v2)
into 4 bases.
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Conclusion

@ The low-rank method is a promising approach to greatly accelerate the
solution of kinetic equations.
e With no modifications, it is a bit of a sledgehammer.
e But it is possible to help it preserve some structure.
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