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What are plasmas?

Plasmas are ionized, di�use gases composed of charged particles
(electrons and ions), and subject to electromagnetic forces.
They are hard to model, but even harder to understand without
computational modeling.
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Two applications of plasma

modeling
Nuclear fusion requires taming
a bewildering array of plasma
instabilities.

62.

10.2. Name Index

In this index the number preceding the class symbol refers to
the corresponding page in the Appendix.

Absolute instability:

Acoustic instabilities

Acoustic wave instability
in a partially ionized plasma

Alfven wave (fire hose)
instability

Amplitude dispersion in-
stability of whistlers

Amplitude dispersion insta-
bilities; relativistic modes

Anisotropic temperature
instability:

Ballooning instability

Beam-centrifugal insta-
bility

Beam-plasma instability:

Bernstein-Greene-Kruskal
wave instability

Buckling instability

Bulge instability:

Bunching instability:

Buneman instability:

Centrifugal instability:

Serenkov instability

Collective instability:

Collective electrostatic
instabilities in a two-
-dimensional field

i

Collisional drift insta-
bility:

Collisionless gravitation
instability:

Collisionless tearing
instability:

see Section 3.4.2.1. (1)

39. (PV'CnlStl'TBfEtLMRlAtI)

8. (PV'CnSsTB'E'LMR'A1!)

57. (PV'C'SsT'Bbf'ELM't'R'A'I)

105. (PV'C'S'lTBb'f'ELMR'AI)

5. (PVC'S'lTBb'ELMR'AI)

see velocity space instability

42. (PVfCTSsTBbf'ELMR'A'I)

73. (PV'C'Ss'vTBb'f'E'LMRpA'I)

see two-stream instability

111. (PV'C'S'lTB'E'L'M'tRp'A'I)

43. (PV'C'SsTBbf'ELMR'A1!)

see sausage instability

see two-stream instability

see two-stream instability

see flute, Rayleigh-Taylor,
and gravitation instabilities

2. (PVC'SsWTBb'f'ELMRpA'I)

see Sector 3.4.4.

99. (PV'C'STBb'E'L'M'A'I)

see drift-dissipative insta-
bility

see gravitation instability;
collisionless modes

see tearing instability;
collisionless modes

Figure: Source [9]

Space is �lled with plasma and
magnetic �elds.

Figure: Europa's induction
response to Jupiter's time-varying
magnetic �eld provides strong
evidence of a liquid ocean. [1]
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The Boltzmann equation

∂t fα + v · ∇x fα + F · ∇v fα =

(
∂fα
∂t

)
coll

=
∑
β

S(fα, fβ).

• Indexed by particle species (α, β)

• fα(x , v , t) a probability distribution

• F = E + v × B couples with Maxwell's equations

• Nonlinearity comes from �eld coupling and from S(fα, fα).

• Posed in six dimensions!
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The collision operator
. . . deserves its own slide.
Many collision models are used, but all satisfy a few invariants.

Important properties of S(fα, fβ)

• Conservation of mass, momentum, and energy:
∫
fα dvα +

∫
fβ dvβ,∫

fαmαvαdvα +
∫
fβmβvβ dvβ,∫

fαmα
|vα|2
2

dvα +
∫
fβmβ

|vβ |2
2

dvβ


• Entropy growth: ∂t

∫
f ln f dv ≥ 0 when for example

∂t f = S(f , f ).

Together these drive the distribution function towards the
Maxwellian distribution:

M(x , t) =
n(x , t)

(2πT (x , t))d/2
e
− |v−u(x,t)|2

2T (x,t) ,
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Motivation for reduced models

• The kinetic equations are extremely costly to simulate
directly.
• For a 3D3V problem, 100 degrees of freedom in each

dimension means 1012 grid points!

• Collisional di�usivity implies that hopefully not all those
degrees of freedom are strictly needed in velocity space.

• Even much-reduced models can capture gross behavior,
esp. �ux of conserved quantities.

Moment Methods

• Conservation laws posed only in physical space

• Includes classical �uid dynamics equations (Navier-Stokes,
Euler)
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Example: single species

Abbreviate the LHS by Df . We derive conservation of mass,
momentum, and energy by integrating:

〈Df = S(f , f ), 1〉v =⇒ ∂tn +∇x · (nu) = 0,

〈Df = S(f , f ), v〉v =⇒

∂t(nu) +∇x · (nT I + nu ⊗ u + P) = n(E + u × B)〈
Df = S(f , f ), |v |2/2

〉
v

=⇒
∂tE +∇x · ((E + nT )u + Pu + q) = E · u

Fluid quantities are de�ned as1

n = 〈f 〉v , u =
1

n
〈fv〉v ,

E = 〈f |v |2/2〉v , T =
1

nd
〈f |v − u|2〉v .

1d is the dimension
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Closure problem

Unfortunately, the moment system is not closed.

Problem moments

• Anisotropic pressure tensor (2 dimensions):

P =

〈
f

[
v2x − |v |2/2 vxvy

vyvx v2y − |v |2/2

]〉
v

,

• Heat �ux:

q = 〈f |v − u|2(v − u)〉v

. . . lead to the moment closure problem

The task is to come up with expressions for P, q (or their
gradients), in terms of the lower order moments.
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Moment Closures

• Accomplishing a moment closure requires simpli�cation.
Count the degrees of freedom!

• Two main �families� of theories.
• Chapman-Enskog theory: explicitly perturbative about a

Maxwellian distribution.
• Ansatz for f : assume f belongs to some class of

distributions or satis�es some variational principle.

Caution
The chosen moment closure should result in a hyperbolic
system. (Eigenvalues of �ux matrix)
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Chapman-Enskog theory
Introduce a small parameter by assuming collisions are strong:
ε = Kn = λ/L.

∂t fα + v · ∇x fα + F · ∇v fα =
1

ε

∑
β

S(fα, fβ)

Expand in powers of ε, about f 0α :

fα = f 0α + εf 1α + ε2f 2α + . . .

Analyzing and retaining terms of a given order in ε results in
familiar �uid equations:

• Order 0: Euler equations (neutral), ideal two-�uid
equations (plasma). �Everything is magically Maxwellian�.

• Order 1: Navier-Stokes equations (neutral), Braginskii
closure (plasma)

• Order 2: Burnett equations (unstable!)
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Hermite polynomial expansion
Grad 1949 [6] used an expansion in Hermite polynomials,2

f = f 0
∞∑

k=0

akHk

(
v − u

vth

)

• Hk are the tensorial rank-k Hermite polynomials,

• ak a corresponding tensor of coe�cients.

• a0 = 1, a1i = a2ii = 0

Hermite polynomials?

The Hermite polynomials are orthogonal with respect to the
Gaussian (Maxwellian) weight:∫

H i (v)H j(v)e−v2/2 dv =
√
2πj!δij

Idea is to truncate the expansion.
2
vth is the thermal velocity, proportional to

√
T .
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Moment methods recap

Bene�ts

• Capture the collisional
asymptotic limit

• Reproduce conservation
laws

• Focus computing resources
on the quantities we care
about: Grad's �physically
meaningful� moments.

• Very natural to discretize
using DG or �nite volume
methods.

Drawbacks

• Perturbative: moment
convergence falls o�
quickly when far from a
Maxwellian.

• Non-adaptive: no
indication from the
moments when your
convergence is getting
worse.
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Brief history of dynamical low-rank

methods
The dynamical low-rank method is a totally di�erent direction
for reduced plasma models.
• Proposed by Koch and Lubich for matrix-valued ODEs [7]
• Extended to higher-order tensors in various formats [8], [11]
• Overapproximation-insensitive integrators developed [10],
[2]
• Applied to kinetic equations [5], [3]

Figure: If the Singular Value Decomposition can compress a picture
of a lighthouse, why not a phase space function?
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Example low-rank kinetic

approximation
Consider an arbitrary equation of �kinetic type�:

∂t f (x , v , t) = h

Look for approximate solutions of the form

f̃ =
r∑

i ,j=1

Xi (x , t)Sij(t)Vj(v , t).

• The integer r is the rank

• Bases X and V are orthonormal:

〈Xi ,Xk〉x = δik , 〈Vj ,Vl 〉v = δjl

• Similar to the SVD, except that S is not necessarily
diagonal.
• =⇒ the decomposition is not unique.
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What makes it dynamical?
We impose a Galerkin condition on the time derivative of the
system:

〈h − h̃, δf̃ 〉 = 0 for all δf̃ ∈ T
f̃
Mr .

• Mr is the manifold of low-rank functions
• T

f̃
Mr is the tangent space to the manifold at f̃ .

• h̃ is our low-rank time derivative.

Figure: The method takes steps along the low-rank manifold's
tangent space.
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Projector-splitting integrator

Equivalently, h̃ = P(f̃ )h for an orthogonal projection P(f̃ ).
It turns out that P has the form

h̃ = P(f̃ )h = Xi 〈Xi , h〉x − Xi 〈XiVj , h〉xvVj + 〈Vj , h〉vVj .

An operator splitting of the projector leads to a simple �rst
order time integration scheme:

f̃ ′ = f̃ (t0) + ∆t(Vj〈Vj , h〉v )

f̃ ′′ = f̃ ′ −∆t(Xi 〈XiVj , h〉xvVj)

f̃ (t1) = f̃ ′′ + ∆t(〈Xi , h〉xXi ).

The scheme is:

• Exact if f has rank r .

• Robust to overapproximation: S can have vanishing
singular values!
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Analysis

Time-complexity savings can be huge.

r � Nx ,Nv =⇒ r2(Nx + Nv )� NxNv

Drawbacks
While an appealing technique, the dynamical low-rank method
is not perfect.

• It fails to preserve mass, momentum, and energy.3

• The approximation can �leak� conserved quantities into the
truncated ranks.

• It fails to recover the asymptotic limit of the Maxwellian
when collisions are strong.
• This is because a Maxwellian with spatially varying

parameters is not low-rank!

3Einkemmer ([4]) presents a conservative low-rank scheme.
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A simple collisional plasma model

Test case: high-�eld limit of the Vlasov-Ampere-Fokker-Planck
system{

∂t f + v · ∇x f + 1

εE · ∇v f = 1

ε∇v · (vf +∇v f ),

∂tE = −J

• The current density J is de�ned J = 〈vf 〉v .
• Physically, can describe high-frequency motion of electrons
against a static ion background �uid.
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Limiting distribution

De�ne the local �Maxwellian�

M(x , v , t) = e−
|v−E(x,t)|2

2

Then our Vlasov-Fokker-Planck equation is

∂t f + v · ∇x f =
1

ε
∇v · [M∇v (M−1f )].

As ε→ 0, f approaches

f =
ρ(x)

(2π)d/2
M,

for the density ρ(x) = 〈f 〉v .
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Limiting �uid system

What is the governing equation for ρ in the ε→ 0 limit?

• Multiply by 1 and v and integrate:

∂tρ+∇x · J = 0

∂tJ +∇x · 〈v ⊗ vf 〉v =
1

ε
(ρE − J).

• Send ε→ 0:

ρE − J = 0 =⇒

{
∂tρ+∇x · (ρE ) = 0,

∂tE = −ρE .
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The Asymptotic-preserving property

{
C kinetic : ∂t f + v · ∇x f = 1

ε∇v · [M∇v (M−1f )],

C�uid : f = ρ
(2π)d/2

M, where ∂tρ+∇x · (ρE ) = 0

Both coupled with Ampere's equation.
We're looking for a kinetic discretization Dkinetic that makes
this diagram commute:

Dkinetic C kinetic

D�uid C�uid

∆t,x ,v→0; r→∞

ε→0 ε→0

∆t,x ,v→0

Goal: the bottom path should hold for �xed r .



Dynamical
Low-Rank
Approxima-
tion for
Plasma
Kinetic
Model

Reduction

Jack
Coughlin,
Jingwei Hu

Plasmas and
Kinetic
Theory

Moment
methods

Dynamical
Low-Rank
Approxima-
tion

Asymptotic-
preserving
low-rank
methods

Conclusion

Low-rank algorithm

Key idea: evolve low-rank representation of g = M−1f :

ε→ 0 =⇒ g → ρ(x)

(2π)d/2
(rank 1)

Recall the low-rank ansatz is

g(x , v , t) =
r∑

i ,j=1

Xi (x , t)Sij(t)Vj(v , t).

Plug f = gM into the Vlasov-Fokker-Planck equation:

h , ∂tg = −v · ∇xg −
1

M
(∂tM + v · ∇xM)g

+
1

ε
[(∇v − v + E ) · ∇vg ].
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Projector-splitting integration

Introduce auxiliary bases K and L:

Kj(x , t) =
∑
i

Xi (x , t)Sij(t), Li (v , t) =
∑
j

Sij(t)Vj(v , t).

1 Advance Kn
j to Kn+1

j via ∂tKj = 〈Vj , h〉v .

2 Perform a QR decomposition of Kn+1

j to obtain X n+1, S ′.

3 Advance S ′ to S ′′ via ∂tSij = −〈XiVj , h〉xv .
4 Advance Ln

i to Ln+1

i via ∂tLi = 〈Xi , h〉x .
5 Perform a QR decomposition of Ln+1

i to obtain
V n+1, Sn+1.
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Spatial and temporal discretization

• First-order �nite di�erence discretization in X and V

• First-order timestepping with implicit treatment of sti�
collision terms

• Caution is required with collision term in �backwards� S
step. Instability in time-reversed di�usion equation can be
partly tamed with Forward Euler cancellation. E.g.
dy/dt = λt:

y1 = (1− λ∆t)−1yn

y2 = (1 + λ(−∆t))y1 = yn

yn+1 = (1− λ∆t)−1y2 = (1− λ∆t)−1yn.
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Small-ε case

For very small ε, we capture the high �eld limit using only a
small rank.

Figure: First-order convergence to
the �uid limit in ∆x
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Singular value evolution
The singular values of the solution relax in one time step to
order ε

Figure: Singular values of solution beginning in local equilibrium
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Singular value evolution
The singular values of the solution relax in one time step to
order ε

Figure: Singular values of solution beginning far from local equilibrium
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Ratio of singular values

Figure: The ratio of the two largest singular values relaxes to order ε
in one timestep.
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Larger ε requires higher rank

Figure: Higher rank is required to resolve less collisionless dynamics.
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Conclusion

• Dynamical low-rank methods can capture the collisional
�uid limit of kinetic equations.

• Arguably more �exible than moment methods, but less
structure-preserving.

Next steps

• Application to magnetized, multispecies plasmas.

• Attempt to enforce conservation following Einkemmer [4].

• Introduce adaptivity by increasing rank as necessary.
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