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What are plasmas?

Plasmas are ionized, diffuse gases composed of charged particles
(electrons and ions), and subject to electromagnetic forces.
They are hard to model, but even harder to understand without

computational modeling.
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Two applications of plasma
modeling

Nuclear fusion requires taming
a bewildering array of plasma
instabilities.
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Figure: Source [9]
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Figure: Europa’s induction
response to Jupiter's time-varying
magnetic field provides strong
evidence of a liquid ocean. [1]

Figure: Source [9]
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fa
Opfa+ v Vb + F- Vi fy = <8> = S(fas o).
ot coll 8

Indexed by particle species («, f3)

fo(x, v, t) a probability distribution

F = E + v x B couples with Maxwell's equations

Nonlinearity comes from field coupling and from S(f,, f,).

Posed in six dimensions!
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Plasma ... deserves its own slide.

inetic

o hodel Many collision models are used, but all satisfy a few invariants.
eduction

Jack Important properties of S(f,, f3)

Coughlin,
Jingwei Hu e Conservation of mass, momentum, and energy:
Elila_lsertr;:s and f fa dVOl + f fﬁ dVB’
Theory f fomavadve + ffﬁm/ng dV,Ba
|2

ffamoéh/% dVa +ff5m5@ dVg

* Entropy growth: d; [ fInf dv > 0 when for example
ot = S(f, f).

Together these drive the distribution function towards the
Maxwellian distribution:

n(x, t) _lvouet)2
M , t)=— 2 e 2T (x,t) ,
) = T (v, 1))972
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Motivation for reduced models

® The kinetic equations are extremely costly to simulate
directly.
® For a 3D3V problem, 100 degrees of freedom in each
dimension means 1012 grid points!
e Collisional diffusivity implies that hopefully not all those
degrees of freedom are strictly needed in velocity space.

® Even much-reduced models can capture gross behavior,
esp. flux of conserved quantities.
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Motivation for reduced models

® The kinetic equations are extremely costly to simulate
directly.
® For a 3D3V problem, 100 degrees of freedom in each
dimension means 1012 grid points!

e Collisional diffusivity implies that hopefully not all those
degrees of freedom are strictly needed in velocity space.

® Even much-reduced models can capture gross behavior,
esp. flux of conserved quantities.

Moment Methods
e Conservation laws posed only in physical space

® Includes classical fluid dynamics equations (Navier-Stokes,
Euler)
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Example: single species
Abbreviate the LHS by Df. We derive conservation of mass,
momentum, and energy by integrating:
(Df =5(f,f),1), = 0in+ V- (nu) =0,
(Df =5(f,f),v), =
Oe(nu) + V- (nTT+ nu®@ u+P) = n(E +u x B)
(Df = S(f,f), |v|2/2>v =
OHE+Vy-(E+nT)u+Pu+q)=E-u

Fluid quantities are defined as?

n={(f)y, u= 1<fv>‘,,

n

VI Lo e
E=(fIvP/2)y, T =_S(flv—ul).

1d is the dimension
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Closure problem

Unfortunately, the moment system is not closed.

Problem moments

e Anisotropic pressure tensor (2 dimensions):
po(r[A M L T
Vy Vx v, —[v[*/2]

e Heat flux:
q = (flv — ul*(v — u))y

... lead to the moment closure problem

The task is to come up with expressions for P, q (or their
gradients), in terms of the lower order moments.
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Moment Closures

e Accomplishing a moment closure requires simplification.
Count the degrees of freedom!
® Two main “families” of theories.
® Chapman-Enskog theory: explicitly perturbative about a
Maxwellian distribution.
® Ansatz for f: assume f belongs to some class of
distributions or satisfies some variational principle.

Caution
The chosen moment closure should result in a hyperbolic

system. (Eigenvalues of flux matrix)
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Chapman-Enskog theory

Introduce a small parameter by assuming collisions are strong:
e=Kn=\/L.

1
Ocfoy + v -Vfy + F -V, = - zﬁ: S(f, f3)

Expand in powers of ¢, about £0:
fo=fFf0+efl + 224 ...

Analyzing and retaining terms of a given order in € results in
familiar fluid equations:
e Order 0: Euler equations (neutral), ideal two-fluid
equations (plasma). “Everything is magically Maxwellian".
® Order 1: Navier-Stokes equations (neutral), Braginskii
closure (plasma)
e Order 2: Burnett equations (unstable!)
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Hermite polynomial expansion
Grad 1949 [6] used an expansion in Hermite polynomials,?

F=F0% akpk <" — ”)
k=0

Vth

® #k are the tensorial rank-k Hermite polynomials,

.ak

° aozl,a}:a,%-:O

a corresponding tensor of coefficients.

Hermite polynomials?

The Hermite polynomials are orthogonal with respect to the
Gaussian (Maxwellian) weight:

/H"(V)Hj(v)evz/2 dv = v 2mjl6;

Idea is to truncate the expansion.

2y is the thermal velocity, proportional to »/T.
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S, e Capture the collisional Drawbacks
asymptotic limit ® Perturbative: moment
® Reproduce conservation convergence falls off
Moment laws quickly when far from a
methods . H
’ ® Focus computing resources Maxwellian.
on the quantities we care ® Non-adaptive: no
about: Grad’s “physically indication from the
meaningful” moments. moments when your
® Very natural to discretize convergence is getting
using DG or finite volume worse.

methods.
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Brief history of dynamical low-rank

methods
The dynamical low-rank method is a totally different direction
for reduced plasma models.
® Proposed by Koch and Lubich for matrix-valued ODEs [7]
¢ Extended to higher-order tensors in various formats [8], [11]
e Qverapproximation-insensitive integrators developed [10],
[2]

® Applied to kinetic equations [5], [3]

A R OO

Figure: If the Singular Value Decomposition can compress a picture
of a lighthouse, why not a phase space function?
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Example low-rank kinetic
approximation
Consider an arbitrary equation of “kinetic type™:
Oif(x,v,t)=h
Look for approximate solutions of the form

f = Z X;i(x, )Si(t)Vi(v, t).

i,j=1

® The integer r is the rank
® Bases X and V are orthonormal:

(Xi, Xi)x = 0, (Vj, Vi)y = 0

® Similar to the SVD, except that S is not necessarily
diagonal.
® — the decomposition is not unique,
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e M, is the manifold of low-rank functions
® T:M, is the tangent space to the manifold at f.
e his our low-rank time derivative.
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Figure: The method takes steps along the low-rank manifold’s
tangent space.
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Projector-splitting integrator

Equivalently, A = P(f)h for an orthogonal projection P(f).
It turns out that P has the form

h=P(f)h = X;(Xi, B)x — Xi(X: Vi, h)x Vi + (Vi, B), V.

An operator splitting of the projector leads to a simple first
order time integration scheme:

The scheme is:
e Exact if f has rank r.
® Robust to overapproximation: S can have vanishing
singular values!
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Analysis

Time-complexity savings can be huge.

r< N, Ny = r’(Ny+N,) < NN,

3Einkemmer ([4]) presents a conservative low-rank scheme.
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Analysis

Time-complexity savings can be huge.

r< N, Ny = r’(Ny+N,) < NN,

Drawbacks
While an appealing technique, the dynamical low-rank method

is not perfect.
® |t fails to preserve mass, momentum, and energy.>
® The approximation can “leak” conserved quantities into the
truncated ranks.
e |t fails to recover the asymptotic limit of the Maxwellian

when collisions are strong.
® This is because a Maxwellian with spatially varying

parameters is not low-rank!

3Einkemmer ([4]) presents a conservative low-rank scheme.
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A simple collisional plasma model

Test case: high-field limit of the Vlasov-Ampere-Fokker-Planck
system

Of +v-Vif +LE-V,f =1V, (v + V,f),
8tE = —J
® The current density J is defined J = (vf),.

® Physically, can describe high-frequency motion of electrons
against a static ion background fluid.
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Define the local "Maxwellian”

M(x,v,t)=e

Then our Vlasov-Fokker-Plan
Of +v-Vyf =
As ¢ — 0, f approaches

f =

for the density p(x) = (f),.

Limiting distribution

_Iv—E(x,1)?
2

ck equation is

1vv MV, (ML),

€

px)

(Qﬂ)d/2 ’
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Limiting fluid system

What is the governing equation for p in the € — 0 limit?
e Multiply by 1 and v and integrate:
Oip+Vyx-J=0
1
Ord + V- (vavf), = E(pE —J).

® Send € — 0;

pE—J=0

Oep + Vi - (pE) =0,
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The Asymptotic-preserving property

Chinetic . 9 f +v-Vif =1V, - [MV,(M~1f)),
cfud.  f = M, where O;p + Vi - (pE) =0

@

Both coupled with Ampere’s equation.
We're looking for a kinetic discretization D"t that makes
this diagram commute:

Dkinetic At,x,v—=0; r—oo (Ckinetic
lﬁ—)o leﬁo
pfiuid Atx,v—0 Cfluid

Goal: the bottom path should hold for fixed r.
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Low-rank algorithm

Key idea: evolve low-rank representation of g = M~1f:

e—=0 = g— (2/;(;/)/2 (rank 1)

Recall the low-rank ansatz is

g(x,v,t) Zth,J )Vi(v, t).

ij=1

Plug f = gM into the Vlasov-Fokker-Planck equation:

h&og=-v-V (8tM+v VxM)g

x8 — M
+2[(Ve v+ E) Vil
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* Ki(x,£) = > Xi(x, £)S5(t),  Li(v.t) = > Si(t)Vi(v.t).
i J
® Advance K/ to an+1 via 0:Kj = (Vj, h)v.
@® Perform a QR decomposition of Kj"+1 to obtain X1 S’
©® Advance S’ to 5" via 0:Sj; = —(X;V}, h)xv.
Asymptotic- O Advance L7 to L™ via 9;L; = (Xi, h)x.
preserving
low rank @ Perform a QR decomposition of LI to obtain

1 1
Vol gntl,
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Spatial and temporal discretization

® First-order finite difference discretization in X and V

e First-order timestepping with implicit treatment of stiff
collision terms

e Caution is required with collision term in “backwards” S
step. Instability in time-reversed diffusion equation can be
partly tamed with Forward Euler cancellation. E.g.
dy/dt = \t:

yi=(1—A\At)y"
y2=(1+A(=At))yr =y"
y" = (1= AAD) Ty = (1 - AAD) Ty
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Small-€ case

For very small ¢, we capture the high field limit using only a

small rank.

Reference (Fluid Limit)

v v v
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Figure: First-order convergence to
the fluid limit in Ax
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The singular values of the solution relax in one time step to

order €

Singular value evolution

Magnitude of singular values
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Figure: Singular values of solution beginning in local equilibrium
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Figure: Singular values of solution beginning far from local equilibrium
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Ratio of singular values

Ratio of first two singular values
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Figure: The ratio of the two largest singular values
in one timestep.

relaxes to order ¢
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Figure: Higher rank is required to resolve less collisionless dynamics.
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fluid limit of kinetic equations.
® Arguably more flexible than moment methods, but less
structure-preserving.

Next steps
e Application to magnetized, multispecies plasmas.
e Attempt to enforce conservation following Einkemmer [4].

® Introduce adaptivity by increasing rank as necessary.

Conclusion
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